
Polyglot Data Management:
State of the Art & Open Challenges

Felix Kiehn
felix.kiehn@uni-hamburg.de

Mareike Schmidt
mareike.schmidt-3@uni-hamburg.de

Daniel Glake
daniel.glake@uni-hamburg.de

Fabian Panse
fabian.panse@uni-hamburg.de

Wolfram Wingerath
wolle@uni-oldenburg.de

Benjamin Wollmer
benjamin.wollmer@uni-hamburg.de

Martin Poppinga
martin.poppinga@uni-hamburg.de

Norbert Ritter
norbert.ritter@uni-hamburg.de

Who We Are

Polyglot Data Management: State of the Art & Open Challenges 2

Norbert RitterFabian PanseMareike Schmidt

Felix Kiehn

Martin Poppinga

Daniel Glake

Benjamin Wollmer

Wolfram Wingerath

Outlook

Polyglot Data Management: State of the Art & Open Challenges 3

PART V:

Open Challenges

PART I:

Motivation &

Database Landscape

PART II:

Terminology & Taxonomies

PART III:

Basic Techniques

& Concepts

PART IV:

Current Systems

Part I

Polyglot Data Management: State of the Art & Open Challenges 4

Motivation &

Database Landscape

Use Case 1: E-Commerce

Polyglot Data Management: State of the Art & Open Challenges 5

Products ERP

forecastslogistics business

numbers

Payment

High Availability &

Flexible Consistency

OLTP

(High Consistency)

Machine

Learning

OLAP

recommendationsdescriptions ratings prices

High Read Throuput

transactions

https://www.baqend.com/publications

https://www.baqend.com/publications

Use Case 2: Medical Application Data (e.g. MIMIC)

Polyglot Data Management: State of the Art & Open Challenges 6

High

Availability

OLTP

(High Consistency)

Machine

Learning

Complex

Analytics

Full Text

Search

Payment

transactions

Examination Results

medical

images

laboratry

results
statistics

Patient Information

monitoringpatient data medication doctor‘s

notes

RealtimeStructured

Data

https://physionet.org/content/mimiciii

https://physionet.org/content/mimiciii

Use Case 3: Digital Twin (e.g. MARS)

Polyglot Data Management: State of the Art & Open Challenges 7

High Read

Throughput

Realtime Machine

Learning

High Write

Throughput

Vector

Point

Updates Dynamic DataStatic Data (Environmental)

satellite

images
buildings streets POI‘s

GraphVector

Linestring

Vector

Polygon GIS

sensors detectors social

network

moving

objects

decision

making

Raster

1,3 Band

https://mars.haw-hamburg.de

https://mars.haw-hamburg.de/

A Short History of Data Management

Relational
Model

Ingres

System R

Triggers

Entity-Relationship Model

SQL
Standard

PostgreSQL

HiPAC

Starburst

Rapide

STREAM

Aurora &
Borealis

MapReduce

Bigtable

Dynamo

Spark

Storm

Flink

Samza

RethinkDB

Meteor

Firebase

Baqend

GFS

Relational Databases

Active Databases

CEP &
Streams

Big Data &
NoSQL

Real-Time
Databases

Telegraph

Stream
Processing

1970

1980

1990

2000

2010

today

Not included:
• Timeseries DBs
• (Geo-)spatial DBs
• Object-oriented DBs
• Probabilistic DBs
• Graph Stores
• …

Polyglot Data Management: State of the Art & Open Challenges 8

Typical Classification Schemes

Polyglot Data Management: State of the Art & Open Challenges 9

CP: Consistent &
Partition Tolerant

CAP Classes

AP: Available &
Partition Tolerant

CA: Not Partition
Tolerant

Not included:

• Functional/non-functional properties

• Cloud vs. on-premise

• ACID vs. BASE

• …

Data Model

Graph

Document

Wide-Column

Key-Value

Relational

Pull vs. Push

Databases:
static collections

Real-Time DBs:
dynamic collections

Stream Processing:
dynamic streams

How to Choose The „Right“ Database System?

Polyglot Data Management: State of the Art & Open Challenges 10

Billing Data

Nested
Application Data

Session data
Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage

Friend
network Cached data

& metrics

Recommen-
dation Engine

Application Layer

NoSQL Toolbox: Requirements vs. Techniques

Polyglot Data Management: State of the Art & Open Challenges 11

Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Sharding

Replication

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Query Processing

Elasticity

Consistency

Read Latency

Write Throughput

Read Availability

Write Availability

Durability

Write Latency

Write Scalability

Read Scalability

Data Scalability

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

Pivotal NoSQL
techniques

application
requirements

enable

operational
requirements

enable

https://www.springer.com/gp/book/9783030435059

NoSQL Decision Tree

Polyglot Data Management: State of the Art & Open Challenges 12

Access

Fast Lookups

RAM

Redis
Memcache

Unbounded

AP CP

Complex Queries

HDD-Size Unbounded

AnalyticsACID Availability Ad-hoc

Cache

VolumeVolume

CAP Query PatternConsistency

Example Applications

Cassandra
Riak

Voldemort
Aerospike

Shopping-
basket

HBase
MongoDB
CouchBase
DynamoDB

Order
History

RDBMS
Neo4j

RavenDB
MarkLogic

OLTP

CouchDB
MongoDB
SimpleDB

Website

MongoDB
RethinkDB

HBase,Accumulo
ElasticSeach, Solr

Social
Network

Hadoop, Spark
Parallel DWH

Cassandra, HBase
Riak, MongoDB

Big Data

Open Challenges:
• Complex Trade-Offs that may

contradict one another
• Complex Architectures with many

different data management systems
• In-flux Requirements: You may have

to revisit your decision over time

More on the Topic

Polyglot Data Management: State of the Art & Open Challenges 13

For videos & books, visit

dbis.hamburg!

https://dbis.hamburg/publications

How to Choose The „Right“ Database System?

Polyglot Data Management: State of the Art & Open Challenges 14

Billing Data

Nested
Application Data

Session data
Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage

Friend
network Cached data

& metrics

Recommen-
dation Engine

Actual Question: How to Build a System That Does All This?

Application LayerResearch Question:

Can we automate the mapping problem?

data database

Part II

Polyglot Data Management: State of the Art & Open Challenges 15

Terminology

& Taxonomies

Terminology & Taxonomies

Polyglot Data Management: State of the Art & Open Challenges 16

Multistores

?????

Federating (Specialized)

Data Stores

Generalized

Data Federation

Modern Federated

Database Systems

Query & Data Store based Taxonomy

▪Query Interfaces:

▪Data Stores:

Polyglot Data Management: State of the Art & Open Challenges 17

Single Multiple

Homogenous Heterogenous

Query & Data Store based Taxonomy

▪Query Interfaces:

▪Data Stores:

Polyglot Data Management: State of the Art & Open Challenges 18

Single Multiple

Homogenous Heterogenous

Query Engine

single

query interface

homogenous data stores

• Federated DB System

Single interface, homogenous stores

S1 S2 S3

Query & Data Store based Taxonomy

▪Query Interfaces:

▪Data Stores:

Polyglot Data Management: State of the Art & Open Challenges 19

Single Multiple

Homogenous Heterogenous

Query Engine

multiple

query interfaces

homogenous data stores

• Federated DB System

Single interface, homogenous stores

• Polylingual / Polyglot DB System

Multiple interfaces, homogenous stores

S1 S2 S3

Query & Data Store based Taxonomy

▪Query Interfaces:

▪Data Stores:

Polyglot Data Management: State of the Art & Open Challenges 20

Single Multiple

Homogenous Heterogenous

Query Engine

heterogenous data stores

• Federated DB System

Single interface, homogenous stores

• Polylingual / Polyglot DB System

Multiple interfaces, homogenous stores

• MultiStore

Single interface, heterogenous storesS1 S2 S3

single

query interface

Query & Data Store based Taxonomy

▪Query Interfaces:

▪Data Stores:

Polyglot Data Management: State of the Art & Open Challenges 21

Single Multiple

Homogenous Heterogenous

Query Engine

heterogenous data stores

• Federated DB System

Single interface, homogenous stores

• Polylingual / Polyglot DB System

Multiple interfaces, homogenous stores

• MultiStore

Single interface, heterogenous stores

• PolyStore

Multiple interfaces, heterogenous stores

S1 S2 S3

multiple

query interfaces

• Federated DB System

Single interface, homogenous stores

• Polylingual / Polyglot DB System

Multiple interfaces, homogenous stores

• MultiStore

Single interface, heterogenous stores

• PolyStore

Multiple interfaces, heterogenous stores

Query & Data Store based Taxonomy

▪Query Interfaces:

▪Data Stores:

Polyglot Data Management: State of the Art & Open Challenges 22

Single Multiple

Homogenous Heterogenous

Query Engine

heterogenous data stores

S1 S2 S3

single vs. multiple

query interfaces

Loosely vs. Tightly Coupled

Polyglot Data Management: State of the Art & Open Challenges 23

Query Engine

Query

Interface

Loosely
(like a data integration scenario)user

department A

Data:

Store Autonomy:

Access:

Local Config.:

Data Quality:

Semantic Het.:

External

High

Read-Only

No

Little control

Possible

10111

01001

department B department C

11011

01011

00111

11011

admin

S1 S2 S3

Loosely vs. Tightly Coupled

Polyglot Data Management: State of the Art & Open Challenges 24

Query Engine

Query

Interface

Loosely
(like a data integration scenario)user

Data:

Store Autonomy:

Access:

Local Config.:

Data Quality:

Semantic Het.:

External

High

Read-Only

No

Little control

Possible

10111

01001
11011

01011

00111

11011

admin

S1 S2 S3

department A department B department C

Loosely vs. Tightly Coupled

Polyglot Data Management: State of the Art & Open Challenges 25

Tightly
(like a distributed system)

Data:

Store Autonomy:

Access:

Local Config.:

Data Quality:

Semantic Het.:

Internal

None

Write & Read

Yes

High control

None

Query Engine

Query

Interface

user admin /

owner

S1 S2 S3S1

10111

01001

10111

01001

able to migrate data

between stores

able to reconfigure

individual stores

Evaluation Framework

Polyglot Data Management: State of the Art & Open Challenges 26

Autonomy
Association, Execution & Evolution

Heterogeneity
Data Stores, Processing Engines
& Query Interfaces

Optimality
Federated Plan & Data Placement

Transparency
Location & Transformation

Flexibility
Schema, Interface & Architectural

Heterogeneity

Autonomy

Transparency Flexibility

Optimality

Tan et al., Enabling Query Processing across Heterogeneous Data Models: A Survey, IEEE BigData, 2017.

BigDAWG Apache Drill Myria

Part III

Polyglot Data Management: State of the Art & Open Challenges 27

Basic Techniques

& Concepts

Basic Techniques & Concepts: Overview

Polyglot Data Management: State of the Art & Open Challenges 28

Mediator-Wrapper Architecture
Popular architecture of integration systems

Schema Mapping Languages
How to model relationships between schemas?

Joins
How to combine data from different stores?

Cross-Platform Query Planning
How to optimize queries across stores?

Mediator

Mediator-Wrapper Architecture

Polyglot Data Management: State of the Art & Open Challenges 29

S1 S2 S3

Wrapper Wrapper Wrapper

Query

Interface

global

schema

local schemas

Tasks:

• build query plan

• decompose query

• determine join order

• push subqueries

• orchastrate query execution

• combine subquery results

Tasks:

• translate query in local

language / schema

• transform result records to

global schema

JSON SQL SQL

SQL

SQL
export

schema

Schema Mapping Languages

Polyglot Data Management: State of the Art & Open Challenges 30

S1 S2 S3

Mediator

Wrapper Wrapper Wrapper

Query

Interface

global

schema

local schemas

⋈

⋈

G1 G2
Global-as-View (GaV)

Flexibility:

Query Processing:

Number Views:

Complexity Views:

Modeling Power:

Low

Simple

Low

High

Medium

𝐆𝟏 ⊇ 𝐒𝟏 ⋈ (𝐒𝟐 ⋈ 𝐒𝟑)

Schema Mapping Languages

Polyglot Data Management: State of the Art & Open Challenges 31

S1 S2 S3

Mediator

Wrapper Wrapper Wrapper

Query

Interface

global

schema

local schemas

∪

G1 G2
Global-as-View (GaV)

𝝈𝒄

𝝅𝑨

𝐆𝟐 ⊇ 𝝅𝑨(𝝈𝒄(𝐒𝟏)) ∪ 𝐒𝟑

Flexibility:

Query Processing:

Number Views:

Complexity Views:

Modeling Power:

Low

Simple

Low

High

Medium

Schema Mapping Languages

Polyglot Data Management: State of the Art & Open Challenges 32

S1 S2 S3

Mediator

Wrapper Wrapper Wrapper

Query

Interface

global

schema

local schemas

G1 G2
Local-as-View (LaV)

𝝈𝒄

⋈
𝐒𝟐 ⊆ 𝐆𝟏 ⋈ 𝝈𝒄(𝐆𝟐)

Flexibility:

Query Processing:

Number Views:

Complexity Views:

Modeling Power:

High

Complex

High

Low

Medium

Schema Mapping Languages

Polyglot Data Management: State of the Art & Open Challenges 33

S1 S2 S3

Mediator

Wrapper Wrapper Wrapper

Query

Interface

global

schema

local schemas

G1 G2
Global-Local-as-View (GLaV)

𝝈𝒄

⋈
𝐒𝟐 ⋈ 𝐒𝟑 ⊆ 𝐆𝟏 ⋈ 𝝈𝒄(𝐆𝟐)

⋈

Flexibility:

Query Processing:

Number Views:

Complexity Views:

Modeling Power:

High

Complex

Medium

Low - High

High

Polyglot Data Management

Join Operators, Frameworks & Algorithms

Polyglot Data Management: State of the Art & Open Challenges 34

Limited store capabilities:

• Store is not able to perform joins

• Store is not able to provide all records

• Store returns records at irregular frequency

Distributed,
Parallel,
& GPUs

• GPU-NL Join (2021)

• SquirrelJoin (2017)

• Flow-Join (2016)

• Track Join (2014)

• …

Data
Streams

• Ajoin (2021)

• FastJoin (2019)

• ScaleJoin (2016)

• BiStream (2015)

• …

Network &
Data Skews

• FastJoin (2019)

• SharesSkew (2018)

• SquirrelJoin (2017)

• Flow-Join (2016)

• …

Spatio-
temporal

• k-SDJoin (2020)

• HyMJ (2019)

• TL-Join (2019)

• …

S1
⋈

Mediator

Bind Join (Fetch-Match Strategy)

Polyglot Data Management: State of the Art & Open Challenges 35

S2
Y

SELECT *

FROM S1, S2

WHERE S1.A=S2.Y

AND S1.B = 5;

SELECT *

FROM S1

WHERE B = 5;

1 SELECT *

FROM S2

WHERE Y IN (2,7,11,…);

3

A B C D

2 5 XY RS

7 5 PQ WI

11 5 UV WI

… … … …

A

2

7

11

…

2 • Scenario:

• Stores are not able

to perform joins

• Mediator cannot ship

data between stores

• |Subquery1|≪ |Subquery2|

• Without IN-subquery support:

One query per join value x ∈ A

SELECT *

FROM S2

WHERE Y = x;

• Fast access per index

• Used in CloudMdsQL and

ESTOCADA
⋈

Double Pipelined Symmetric Hash Join

Polyglot Data Management: State of the Art & Open Challenges 36

… …i j j

M
E

M
O

R
Y

output

Store A Store B

record r

hash(r) = i

record s

hash(s) = j

probe probe insertinsert

partitions

of Store B

partitions

of Store A

• Using two hash tables

• insert new record in own hash

• probe with other hash for

potential join partners

• Symmetry reduces risks of blocking

• Pipelining (records are pushed

immediately to next operator)

• XJoin: Spills partitions to disk

• Enables larger data sets

• Allows more parallelism

• Reduces down times

i

Urhan et al., XJoin: A Reactively-Scheduled Pipelined Join Operator,

IEEE Data Eng. Bull. 23(2), 2000.

ZigZag Join (JEN)

Polyglot Data Management: State of the Art & Open Challenges 37

Distributed

RDBMS

D

HDFS

H

BFD*

BFH*

WHERE B = 5
1

2

4

WHERE Z = 4

AND Y IN BFD*

3

• Join between
• (distributed) RDBMS D

• HDFS H

• Assumptions:
• |H| ≫ |D|

• Local predicates not selective

• Hash h for repartitioning

1 Local selection in D

2 Send bloom filter BFD*

3 Local & Join selection in H

4 Send bloom filter BFH*

5 Shuffle H* using h
h(H*)5

D* H*

SELECT * FROM D, H

WHERE D.A = H.Y AND D.B = 5 AND H.Z = 4;

Tian et al., Joins for Hybrid Warehouses: Exploiting Massive Parallelism

in Hadoop and Enterprise Data Warehouses, EDBT, 2015.

ZigZag Join (JEN)

Polyglot Data Management: State of the Art & Open Challenges 38

Distributed

RDBMS

D

HDFS

H

WHERE A IN BFH∗

6

7

9

JOIN D∗∗ AND H∗

ON A = Y

8

SELECT * FROM D, H

WHERE D.A = H.Y AND D.B = 5 AND H.Z = 4;

6 Join selection in D

7 Distribute D** to HDFS

partitions using h

8 Join D** and H*

(+ group by & aggregate)

9 Send join result

D** HD

h(D**)

HD
Tian et al., Joins for Hybrid Warehouses: Exploiting Massive Parallelism

in Hadoop and Enterprise Data Warehouses, EDBT, 2015.

• Join between
• (distributed) RDBMS D

• HDFS H

• Assumptions:
• |H| ≫ |D|

• Local predicates not selective

• Hash h for repartitioning

Cross-Platform Query Planning

Polyglot Data Management: State of the Art & Open Challenges 39

Single Application Query

(e.g, Use-Case)

Operator in Query
• Filter

• Map

• Aggregation

• Grouping

• Join

• Path Matches

• …

Constraints:

• Service Level Objectives

• Find efficient Migrations in

platform network w.r.t.

computing resources

Placement Planning

Planning:

• Map operators to stores

• NP-hard for discrete sets

• Add migrations of data or

operators

Billing Data
Nested

Application Data

Session data
Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage

Friend
network Cached data

& metrics

Recommen-
dation Engine

Cross-Platform Query Planning

Polyglot Data Management: State of the Art & Open Challenges 40

Mediator

Query Interface
global

schema

Mapping

Parallelize

Resources

O1, …, On S1, …, SN

Migration
Model

Constrains

Latency

Capabilities

Cardinality Join and Merge

• Map

• Filter

• Convert

• Join

• Agg.

• Group

S1 S2 S3 SN…

Tasks:

• Operator plan

• Select platforms with

mappings for operations

• Push-down operations and

link platforms with migrations

JSON SQL

Hint:

• Layered topology placement

• Single platform support of

(special-filter) operations

• Forward result to next store

Network:

• Loading complete data set or

• Use streaming (distributed stream

support) – Volcano model

Shapes – Sequential

Polyglot Data Management: State of the Art & Open Challenges 41

S1

S2

S3

𝝈𝒄

𝝅𝑨

𝑫𝟏

Sink

Shapes – Hierarchy

Polyglot Data Management: State of the Art & Open Challenges 42

S5

Hint:

• Replicated topology

placement

• Decomposition for multiple

sources (S1 & S2)

• Parallel execution

• Decomposition under actual

system deployment (same

node, but different stores)

S1

S3

S4

S6

𝝈𝒄 𝝅𝑩→𝑨

𝝅𝑨

𝑫𝟐𝑫𝟏 S2

⋈ Sink

Network:

• Symmetric vs. asymmetric

join placement

Migrate

to model

e.g. bind-join

SQL WideColumn

Shapes – Diamond

Polyglot Data Management: State of the Art & Open Challenges 43

S5

Hint:

• Diamond topology

• Same as hierarchy-shape

• Partitioning of single data sets

(e.g., reducing-workload-

partitioning)

S1

S3

S4

𝝈𝒄 𝝈𝒅

𝝅𝑨

𝑫𝟐 𝑫𝟏

S6 Sink⋈

SQL

Operator Placement – Approaches

Polyglot Data Management: State of the Art & Open Challenges 44

▪ ML-based:
◦ Explore placement decision for similar workloads

◦ Learn latency of operator mappings

◦ Learn cardinalities of topologies (JOP)

▪ Model-free: provide direct placement seek

◦ Greedy First-match

◦ Local optimization on greedy-first

◦ Tabu search

▪ Model-based: different strategies
for placement solution
◦ Hierarchical Placement

◦ Pruned Space Placement

◦ Relax-Expand-Solve

Polyglot Data Management: State of the Art & Open Challenges 45

Resolve dependencies

between platforms and

operators

Fixed operators as initial

placement and greedy

expansion along logical plan

Co-Locate operators on

same platforms

Move single operator to

another location to reduce

estimated cost and latency

1 2 3

4

Switch platform by adding

migration between source

and target

5

Enumerate multiple plans

(repeat step 3., 4. and 5.

until threshold)

6

• Local optima problem

• May split co-location

• Neighbour lookup

• Terminate, when no

further improvement

Operator Placement – Model-free Tactics

Part IV

Polyglot Data Management: State of the Art & Open Challenges 46

Current Systems

Overview: Polyglot Data Management Systems

Polyglot Data Management: State of the Art & Open Challenges 47

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

BigIntegrator

FORWARD

Apache Drill (Calcite)

QoX

QUEPA

Odyssey

RHEEM

MuSQLE

HadoopDB

CloudMdsQL

SparkSQL

ESTOCADA

Polypheny-DB

BigDAWG

Myria

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

RHEEM

CloudMdsQL

ESTOCADA

BigDAWG

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

RHEEM

CloudMdsQL

ESTOCADA

BigDAWG

Single

Interface

Multiple

Interfaces

PolyBase

Polyglot Data Management: State of the Art & Open Challenges 48

▪ Virtual data integration solution

from Microsoft

▪ Distributed compute engine

integrated with MS SQL Server

▪ Query data where it lives (T-SQL):
◦ Oracle

◦ MongoDB

◦ Teradata

◦ Hadoop-Cluster

◦ Cosmos-DB

◦ S3-compatble Store

◦ SAP HANA

Example from: PolyBase Extension Group Model: https://docs.microsoft.com/de-de/sql/

relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16,

Accessed: June 2022

https://docs.microsoft.com/de-de/sql/
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16

PolyBase – Query Concept

Polyglot Data Management: State of the Art & Open Challenges 49

▪ Manual schema definition by Admin

▪ Create external data source in T-SQL

(e.g., MongoDB)

◦ Global schema in MS SQL

◦ Definition of relational view on source

such as MongoDB collection

◦ User-defined statistics for source

◦ MS SQL applies flattening rules on

hierarchial source models

▪ Bridge the heterogeneity of models

Example from: PolyBase Extension Group Model: https://docs.microsoft.com/de-de/sql/

relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16,

Accessed: June 2022

https://docs.microsoft.com/de-de/sql/
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16

PolyBase – Optimization Model

Polyglot Data Management: State of the Art & Open Challenges 50

▪ Distributed query execution across

SQL Servers

◦ Read external partitioning metadata

◦ Split MS SQL source and remote source

◦ Push-down operations where possible

▪ Plugin architecture for SQL-Server

◦ Mapping of T-SQL to stores

◦ Scale-out compute node

◦ PolyBase waits for source data to be

processed

Example from: PolyBase Extension Group Model: https://docs.microsoft.com/en-us/sql/

relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16,

Accessed: August 2022

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16

Overview: Polyglot Data Management Systems

Polyglot Data Management: State of the Art & Open Challenges 51

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

BigIntegrator

FORWARD

Apache Drill (Calcite)

QoX

QUEPA

Odyssey

RHEEM

MuSQLE

HadoopDB

CloudMdsQL

SparkSQL

ESTOCADA

Polypheny-DB

BigDAWG

Myria

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

RHEEM

CloudMdsQL

ESTOCADA

BigDAWG

Single

Interface

Multiple

Interfaces

RHEEM – Plan Enumeration

Polyglot Data Management: State of the Art & Open Challenges 52

▪ Input: Directed RHEEM dataflow plan

◦ RheemLatin DSL

◦ RheemStudio

◦ Java, Scala, Python

◦ REST Endpoint

▪ Output: Inflated operator plan with

migration steps between platforms

◦ Map fix RHEEM operator to execution
platform

◦ Apply mappings between single logical
operators to n* execution operators

◦ Resolve minimum conversion tree to
transfer data between multiple platforms

Kruse et al., RHEEMix in the Data Jungle–A Cross-Platform Query Optimizer, VLDB J., 2020.

RHEEM

Polyglot Data Management: State of the Art & Open Challenges 53

▪ Decoupling application task from

(multi-platform) execution

▪ Mapping of platform-agnostic operator

to platform-specific operators using LAV

▪ Resolve Migrations using Channel

Conversion Graph

▪ Supports

◦ InMemory (Java), GraphChi

◦ PostgreSQL

◦ Flink, Spark

▪ Developed as Apache Wayang (Incubating)

Agrawal et al., Rheem: Enabling multi-platform task execution, SIGMOD, 2018.

RHEEM – Plan Optimization

Polyglot Data Management: State of the Art & Open Challenges 54

▪ First version: genetic cost-model

learner, loss reduction

◦ operator execution costs

◦ Samples cardinalities and reduce size

estimation function e.g., Filter: card

(Filter)= cin(Filter) *σf for selectivity f

▪ ML version (Robopt): supervised

fine-level cost-tuning

◦ Encodes logical operator-, platforms and

movements into vectors

◦ Vectorized execution plan

◦ ML-model selects enumerated vector

plans with platform-agnostic operations

◦ Optimizes the order of executing

RHEEM operators

Kruse et al., RHEEMix in the Data Jungle–A Cross-Platform Query Optimizer, VLDB J., 2020.

Kaoudi et al., ML-based cross-platform query optimization, ICDE, 2020.

Overview: Polyglot Data Management Systems

Polyglot Data Management: State of the Art & Open Challenges 55

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

BigIntegrator

FORWARD

Apache Drill (Calcite)

QoX

QUEPA

Odyssey

RHEEM

MuSQLE

HadoopDB

CloudMdsQL

SparkSQL

ESTOCADA

Polypheny-DB

BigDAWG

Myria

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

RHEEM

CloudMdsQL

ESTOCADA

BigDAWG

Single

Interface

Multiple

Interfaces

BigDAWG – Overview and Architecture

Polyglot Data Management: State of the Art & Open Challenges 56

▪Developed at:

◦ At: Intel Science and Technology

Center for Big Data (MIT)

◦ Between: 2015 and 2019

▪Use Cases:

◦ Medical applications (MIMIC II)

◦ Ocean Metagenomic Analysis

Architecture figure: Gadepally et al., The BigDAWG polystore system and architecture, IEEE HPEC, 2016.

BigDAWG – Islands of Information

Polyglot Data Management: State of the Art & Open Challenges 57

Array scope

Cast operation

Relational scope

▪ 3 components of virtual islands:

◦ Data model

◦ Query language

◦ Storage engines

▪ Degenerate islands to achieve semantic

completeness

▪ Shims: semantical mapping between island

and data store

▪ Casts and Scope: accessing multiple

islands

▪ Extensible by implementing new islands

bdarray(

filter(

bdcast(

bdrel(SELECT val FROM table),

postgres_results,

´<val:double> [i=0:*,100,0]´,

array),

val < 35)

)

Relational

Island
+

Example from: O’Brien, Polystore Systems for Complex Data Management, IEEE HPEC, 2017.

BigDAWG – Performance Profiling

Polyglot Data Management: State of the Art & Open Challenges 58

▪ Training mode:

◦ all plans of a query are executed

◦ the best is stored in the preference matrix

▪Optimized mode:

◦ either the best plan from the preference matrix

◦ or a random plan is executed

▪Opportunistic mode:

◦ Similar to optimized mode

◦ Additional evaluations during times of low system utilization

◦ Additional evaluations if new stores become available

BigDAWG – Semantic Equivalence

Polyglot Data Management: State of the Art & Open Challenges 59

▪ „Semantically equivalent queries […] are

substitutable“

▪ Encode intersecting sets of semantic capabilities

using a semantic lattice

▪Capture semantic equivalent (sub-)queries in a

semantic dictionary (Equivalence Rule)

▪ 3 types of semantic containment:

◦ Order of result entries

◦ Expressivness of semantics

◦ Backward compatibility
for primitive types

AFL: multiply(a, b) Multiply SciDB

{AFL:multiply(a,b);

SQL:aggregate(join(a,b));

„All values for (int64,

integer)“} Equivalence Rule

SQL: SELECT a.row_num, b.col_num,

SUM(a.value*b.value)

FROM a, b

WHERE a.col_num = b.row_num

GROUP BY a.row_num,

b.col_num; Multiply Relational Database

Figures from: She et al., BigDAWG Polystore Query Optimization Through Semantic Equivalences, IEEE HPEC, 2016.

Overview: Polyglot Data Management Systems

Polyglot Data Management: State of the Art & Open Challenges 60

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

BigIntegrator

FORWARD

Apache Drill (Calcite)

QoX

QUEPA

Odyssey

RHEEM

MuSQLE

HadoopDB

CloudMdsQL

SparkSQL

ESTOCADA

Polypheny-DB

BigDAWG

Myria

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

RHEEM

CloudMdsQL

ESTOCADA

BigDAWG

Single

Interface

Multiple

Interfaces

ESTOCADA

Polyglot Data Management: State of the Art & Open Challenges 61

▪ Developed by University of San Diego and INRIA*

▪ Focus on view-based Query Rewriting

(Local-as-view)

▪ Leveraging possible data redundancy and

previously computed query results for

improving performance

▪ Can be built into existing Polystores

(e.g., BigDAWG, SparkSQL, Tatooine)

▪ Functional demonstration based on MIMIC III dataset

* Institut national de recherche en sciences et technologies du numérique Architecture figure: Bugiotti et al., Invisible Glue: Scalable Self-Tuning Multi-Stores, CIDR, 2015.

ESTOCADA – Virtual Views

Polyglot Data Management: State of the Art & Open Challenges 62

▪ Relational model as pivot model

▪ Virtual views on underlying models

(encoded relationally)

▪ Differences in semantics modeled

by integrity contraints

◦ tuple-generating dependencies

◦ equality-generating dependencies

▪ Encodings/Models hidden (only

necessary for query rewriting)

Example: Alotaibi et al., Towards Scalable Hybrid Stores: Constraint-Based Rewriting to the Rescue, SIGMOD, 2019.

Collection membership

JSON tree structure

Value Equalitiy semantics

Value assignment

ESTOCADA – Query Language and Rewriting

Polyglot Data Management: State of the Art & Open Challenges 63

QBTXM:

▪ Block-based integration language

▪ Each block contains native query language

◦ FOR clause: Bind variables from stores

◦ WHERE clause: Selections on bound variables

◦ RETURN clause: Construct new data based on

variable bindings

AsterixDB query

SOLR result

model

Query Rewriting:

▪ Optimized version of PACB algorithm

▪ Query rewriting using all virtual as well as

materialized views

Logical Query Plan:

▪ Translation of PACB result into logical plan

◦ Subqueries and supported operators pushed

down to stores

◦ Handling of unsupported operators and

cross-store-joins by the integration layer

Example: Alotaibi et al., ESTOCADA: Towards Scalable Polystore Systems, PVLDB, 2020.

Overview: Polyglot Data Management Systems

Polyglot Data Management: State of the Art & Open Challenges 64

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

BigIntegrator

FORWARD

Apache Drill (Calcite)

QoX

QUEPA

Odyssey

RHEEM

MuSQLE

HadoopDB

CloudMdsQL

SparkSQL

ESTOCADA

Polypheny-DB

BigDAWG

Myria

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

RHEEM

CloudMdsQL

ESTOCADA

BigDAWG

Single

Interface

Multiple

Interfaces

CloudMdsQL

Polyglot Data Management: State of the Art & Open Challenges 65

▪ Functional SQL-like language implemented in LeanXcale (Research system)

▪ Multistore with (current) support for

◦ PostgresQL ◦ Apache Spark

◦ MongoDB ◦ (Python)

▪ Abtraction layer for data retrieval

◦ Preserves the semantics of the underlying data stores

◦ A query may contain embedded (native) subqueries

◦ Python functions to query API-only query interfaces

▪ Mediator/wrapper architecture

▪ Relational model as internal data model

T1(x int, y int)@rdb = (SELECT x, y FROM A)

T2(x int, z array)@mongo = {*

db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})

*}

SELECT T1.x, T2.z

FROM T1, T2

WHERE T1.x = T2.x AND T1.y <= 3

Code Example: Kolev et al., The CloudMdsQL Multistore System, SIGMOD, 2016.

CloudMdsQL – Query Execution

Polyglot Data Management: State of the Art & Open Challenges 66

▪ Queries usually consist of subqueries and an integration SELECT statement

▪ The system creates query execution plans (QEPs)

◦ Subqueries are pushed down to the wrappers/stores

◦ Subquery results are transformed into

a relational format

◦ Relational data is combined using Bind Joins

T1(x int, y int)@rdb = (SELECT x, y FROM A)

T2(x int, z array)@mongo = {*

db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})

*}

SELECT T1.x, T2.z

FROM T1, T2

WHERE T1.x = T2.x

Code Example: Kolev et al., The CloudMdsQL Multistore System, SIGMOD, 2016.

CloudMdsQL – Query Optimization

Polyglot Data Management: State of the Art & Open Challenges 67

▪ The optimization search space for consists of all query rewritings by

◦ Pushing down select operations

◦ Expressing Bind Joins

◦ Join ordering

▪Search space is small, thus a simple exhaustive search strategy is used

▪Usage of a simple catalog for comparing rewritten queries:

◦ Data collection cardinalities ◦ Attribute selectivities

◦ Indexes ◦ Simple cost models

▪ Local cost models provided by probing and sampling by the wrappers

Wrap Up: Polyglot Data Management Systems

Polyglot Data Management: State of the Art & Open Challenges 68

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

BigIntegrator

FORWARD

Apache Drill (Calcite)

QoX

QUEPA

Odyssey

RHEEM

MuSQLE

HadoopDB

CloudMdsQL

SparkSQL

ESTOCADA

Polypheny-DB

BigDAWG

Myria

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

RHEEM

CloudMdsQL

ESTOCADA

BigDAWG

Automatic cross-

platform optimization,

operator placement &

data migration

Extensible pivot query

language, data store

agnostic (LeanXcale)

Virtual views, constrained based

data transformation & block-

based integration language

Application-driven,

customizable data

islands & semantic

equivalence

Single

Interface

Multiple

InterfacesData virtualization, single T-SQL

interface, data fabric (Microsoft)

Part V

Polyglot Data Management: State of the Art & Open Challenges 69

Open Challenges

Open Challenges: Overview

Polyglot Data Management: State of the Art & Open Challenges 70

Cross-System Query Optimization
How to find the optimal query plan?

Unified Access vs. Unique Features
How to design a suitable interface?

Streaming & Real-Time Readiness
How to integrate real time requirements?

Ad Hoc Data Manipulation
How to push user updates to the stores?

Multi-Model Schema Management
How to update schema mappings?

Adaptive Reconfiguration
How to react to changing requirements?

Open Challenges: (i) Unified Access vs. Unique Features

Polyglot Data Management: State of the Art & Open Challenges 71

Mediator query language with

embedded store query languages

✓ Easily extensible

✓ Full semantic/functional complexity

Does not hide complexity

Prevents intra store optimization

potential

„smallest common denominator“

✓ Simple to build

Not very powerful

Loss of semantic/functional features

All-powerful query language

✓ Hidden complexity

✓ Full semantic/functional complexity

Super complex to build

Extensibility challenging

Feasible?

T1(x int, y int)@rdb = (SELECT x, y FROM A)

T2(x int, z array)@mongo = {*

db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})

*}

SELECT T1.x, T2.z

FROM T1, T2

WHERE T1.x = T2.x

Create

D
e
le

teR
e
a
d

Update

FROM readings AS r

GROUP BY r.gas AS g

SELECT ELEMENT {

gas: g,

count: count(group),

avg: avg(

FROM group AS p

SELECT ELEMENT p.r.num)}

@eq{

complex : yes,

null_eq_null : null,

null_and_true : null

} (r=r)

SQL++

SQL++

CloudMdsQL

Code Examples: Kolev et al., The CloudMdsQL Multistore System. SIGMOD, 2016.

Ong et al., The SQL++ Semi-structured Data Model and Query Language. arxiv.org, 2014.

S1

Mediator

Open Challenges: (ii) Ad Hoc Data Manipulation

Polyglot Data Management: State of the Art & Open Challenges 72

S2

ID A B C

S3

ID A

1 11

2 4

3 6

… …

ID B

1 3.4

2 5.1

3 1.9

… …

ID C

1 RS

2 WI

3 WI

… …

ID D

2 9.5

3 8.5

… …

T1 SELECT ID, A * 1.1 + B AS D

FROM T1

WHERE C = „WI“;

UPDATE T1

SET A = 9.5

WHERE ID = 2;

UPDATE T1

SET A = 8.5

WHERE ID = 3;

…
2

Two round approach

1. Determine all records to be updated

2. Update each record based on its ID

Is there any efficient one round

approach?

A B C

CBA

UPDATE T1

SET A = A * 1.1 + B

WHERE C = „WI“;

ID A

1 11

2 9.5

3 8.5

… …

A*

1a 1b

u
p

d
a

te
d

S1

Mediator

Open Challenges: (ii) Ad Hoc Data Manipulation

Polyglot Data Management: State of the Art & Open Challenges 73

S2

ID A B C

S3

ID A

1 11

2 4

3 6

… …

ID B

1 3.4

2 5.1

3 1.9

… …

ID C

1 RS

2 WI

3 WI

… …

T1 A B C

CBA

UPDATE T1

SET A = A * 1.1 + B

WHERE C = „WI“;

ID A

1 11

2 9.5

3 8.5

… …

A*

u
p

d
a

te
d

Further Challenges:

How to ensure cross-store

• Atomicity, Isolation & Durability

• logging

• locking

• recovery

• Consistency

• check constraints

• referential integrity

if individual stores do not support

such mechanisms?

Open Challenges: (iii) Adaptive Reconfiguration

Polyglot Data Management: State of the Art & Open Challenges 74

▪Detecting changing requirements or workloads?

◦ Fluctuating traffic throughout the day

◦ Singular events (e.g. Black Friday)

◦ Additional users in a multi-tenant environment

▪Adapting/reconfiguring the system

◦ Adding or removing resources

◦ Reorganization (e.g. splitting a hot range)

▪Changing the system topology

◦ Data migration between stores

(e.g. write-heavy data to main-memory database)

at runtime

Open Challenges: (iv) Cross-System Query Optimization

Polyglot Data Management: State of the Art & Open Challenges 75

▪ Operator Placement

◦ Data vs. Operator Shipping

◦ Migration Paths

▪ Pareto Optimum of Objectives

◦ Latency

◦ Throughput

◦ Planning

◦ Application Objective

▪ ML-based optimization

◦ Hard constraint for query

correctness in optimization

◦ Join-Ordering for sub-query

Open Challenges: (v) Streaming & Real-Time Readiness

Polyglot Data Management: State of the Art & Open Challenges 76

▪Streaming Workloads

◦ Expose streaming capabilities

◦ Integrate streaming with storage systems

▪Push-based features

◦ Triggers, ECA rules

◦ Change notifications

▪Caching

◦ Materialized views

◦ Cache coherence / cache invalidation Realtime

Updates Dynamic Data

Sensors Detectors Moving Objects

Monitoring

Patient Data

Mediator

Open Challenges: (vi) Multi-Model Schema Management

Polyglot Data Management: State of the Art & Open Challenges 77

• Mappings between global & local

Schemas

• fundamental for query rewriting

• cross-model (e.g., SQL ↔ graph)

• via wrapper

• Update of Mappings

• Evolution of global schema

• Evolution of local schema

• Migration of data between stores

• Composition/Extraction of Mappings

for data migration
S1 S2

Wrapper

S3

Mapping

M2

Mapping

M1

Further Readings

Polyglot Data Management: State of the Art & Open Challenges 78

https://arxiv.org/pdf/2204.05779.pdf

https://par.nsf.gov/servlets/purl/10074262

https://link.springer.com/book/10.1007/978-3-030-26253-2

https://www.cs.helsinki.fi/u/jilu/documents/CIKMTutorial2018.pdf

2

1

3

4

1 2 3

4

Polyglot Data Management: State of the Art & Open Challenges 79

Thanks …

Slides available at:
vldb2022.dbis.hamburg

Norbert Ritter

Fabian PanseMareike SchmidtFelix Kiehn

Martin Poppinga

Daniel Glake

Benjamin WollmerWolfram Wingerath

