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Part |

Motivation &
Database Landscape
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Use Case 1: E-=Commerce

Products
Iz Wk
an
descriptions ratings  prices recommendations

AN

High Availability & High Read Throuput

Flexible Consistency

(High Consistency)

Payment ERP

<l - S

A r

transactions logistics ~ PUSINESS ¢y acasts
numbers

\

OLTP OLAP Machine

Learning

[4 https://www.bagend.com/publications
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Use Case 2: Medical Application Data (e.g. MIMIC)

Patient Information Examination Results Payment
[ - .
TIh , C3
1& REED) A _W_ ¢£ "VI E - “|
SNy P A Sl ES o
patient data medication  99CtOr'S  monitoring laboratry  giatistics ~ medical transactions
notes results images
g / \ \ - !
\ ‘
Structured High Full Text Realtime Complex Machine OLTP
Data Availability Search Analytics Learning (High Consistency)

[4 https://physionet.org/content/mimiciii
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Use Case 3: Digital Twin (e.g. MARS)

Static Data (Environmental) Updates Dynamic Data
\ > i
= N
buildings | streets POI's satellite sensors  detectors moving social decision
images objects network making
X \ \ \\\ |
High Read Vector Vector Vector Raster Realtime Graph High Write Machine
Throughput PolygonLinestring Point 1,3 Band Throughput Learning

[4 https://mars.haw-hamburg.de
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A Short History of Data Management

. EP
Relational Databases Sfrearis prsotcrzj?ng
Entity-Relationship Model aoRed Spark
. apReduce
| Triggers SQL Starburst  <TREAM - - Samza  Bagend
ngres ! a €
\ \ Stand\ard Telegraph : I\/Ieteor
X | \ \ T\ >
HiPAC GFS
System R
y osteresal Rapide Dynamo| Flink | Firebase
_— OBt Aurora & RethinkDB
odl Borealis >torm
Active Databases BlioDsaaaL& ggf;g;;i

Not included:

* Timeseries DBs

* (Geo-)spatial DBs

* Object-oriented DBs
* Probabilistic DBs

e Graph Stores
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Typical Classification Schemes

Not included:
« Functional/non-functional properties « ACID vs. BASE
* Cloud vs. on-premise .
o Data Model o CAP Classes @ Pull vs. Push
> Relational _
, AP: Available & , Datébases. |
I @ Key-Value Partition Tolerant static collections
. P: Consisten Real-Time DBs:
> Wide-Column — < CO S & — . :
Partition Tolerant dynamic collections
—>=| Document , CA: Not Partition , Stream Processing:
Tolerant dynamic streams

»c2  Graph
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How to Choose The ,,Right” Database System?

Billing Data | Application Layer ﬂ-
~ Files \
\ e Google Cloud

Recommen-
Nested dation Engine | vorege
ta r"

Application Da .
‘ Amazon Elastic
| MapReduce

Friend T |
network K Cached data | Search Index | Session data .
I . '_h
& metrics  ——
Vs
*® Neoyj ) -
0 i e é redis ‘ mongoDB elasticsearch. cassandra
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NoSQL Toolbox: Requirements vs. Techniques

enable enable
,,,,/’ \\\\\ ,,,,¢ ‘\\\\\
/ Y Y \
| 4 \ 4 <
application Pivotal NoSQL operational
requirements techniques requirements

"«

m https://www.springer.com/gp/book/9783030435059
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NoSQL Decision Tree
- Open Challenges:

Access * Complex Trade-Offs that may
Fast Lookups Complex Queries contradict one another

* Complex Architectures with many
different data management systems
RA Unbounded HDD-Size Unbounded * In-flux Requirements: You may have
Ap i Cp ACID i Avallablllty Ad- hoc
y

to revisit your decision over time

Query Pattern

Analytics
, !
Redis Cassandra HBase RDBMS CouchDB MongoDB Hadoop, Spark
Memcache Riak MongoDB Neo4j MongoDB RethinkDB Parallel DWH
Voldemort CouchBase RavenDB SimpleDB HBase,Accumulo Cassandra, HBase
Aerospike DynamoDB| |[MarkLogic ElasticSeach, Solr Riak, MongoDB
4 N
Y < < < T < N < —
v aske (__History etwor
L Example Applications )
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More on the Topic
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WOI fram Wingera th Data Management in Multi-Agent Simulation Systems

N 0 rbe rt Ritter From Challenges to First Solutions

Daniel Glake! Fabian Panse! Norbert Ritter! Thomas Clemen? Ulfia Lenfers®

Fast and
Scalable
Cloud Data -
Management

a M USRS OF
] NF AN

Query Web Caching for

i
l
&

........................

@ Springer

DBaaS Providers

For videos & books, visit
dbis.hamburg!

Polyglot Data Management: State of the Art & Open Challenges

SPRINGER BRIEFS IN COMPUTER SCIENCE

Wolfram Wingerath -
Real-Time &
Stream Data

| Management
Push-Based Data
in Research &
Practice

@ Springer


https://dbis.hamburg/publications

Actual Question: How to Bund a System That Does All This?

N
AvTAava ala Aalaa
wA'A' w J \J ” v —Jeteroe v 4
e A e

T

o

“% Google Cloud
» Storage

Billing Data Research Question:

Can we automate the - ~  mapping problem?
L - - Amazon Elastic
Frie data database MapReduce
netw

4%‘

cassandra

§e redis ¥mongoDB elasticsearch.

. the graph database
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Terminology
& Taxonomies

Polyglot Data Management: State of the Art & Open Challenges



Terminology & Taxonomies

Federating (Specialized)

] e Data Stores
ersistenc
Polyglot P
Multistores
Modern Federated PO/
Database Systems Hybrid Stores YStoreg
2999 Generalized

Data Federation

Multidatabaseés
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Query & Data Store based Taxonomy

= Query Interfaces:

= Data Stores:
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Query & Data Store based Taxonomy

= Query Interfaces:

= Data Stores: Homogenous
sir_vgle  Federated DB System
query interface Single interface, homogenous stores

Query Engine

- . EE . S B S . . E—,
- S S S S S S e . .

!

homogenous data stores y

-~
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Query & Data Store based Taxonomy

= Query Interfaces: Multiple

multiple - Federated DB System
query interfaces l_uu_ Single interface, homogenous stores

« Polylingual / Polyglot DB System
Multiple interfaces, homogenous stores

|
|
|
l
|
|
l
|
!
|

Y
‘. homogenous data stores y
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Query & Data Store based Taxonomy
= Query Interfaces:

= Data Stores:

Heterogenous

single  Federated DB System
query interface Single interface, homogenous stores

l/ Query Engine h . Pon_Iing_uaI | Polyglot DB System

| | Multiple interfaces, homogenous stores
| |

: | e MultiStore

: 29

| |

| |

Single interface, heterogenous stores
\ J

Y
‘. heterogenous data stores y
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Query & Data Store based Taxonomy

= Query Interfaces:

Multiple

= Data Stores: Heterogenous
mqltiple  Federated DB System
query interfaces l_uu_ Single interface, homogenous stores

1 Query Engine ' . Pon_Iing_uaI | Polyglot DB System

: Multiple interfaces, homogenous stores
|

|

|

|

|

|

]
l
l
l
: * MultiStore
:
I
l

E a Single interface, heterogenous stores
\ J
Y « PolyStore
het ta st / : :
. . _e_efo_g_e'_vciu_s_d_a _a_S_O_re_S_ _ Multiple interfaces, heterogenous stores
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Query & Data Store based Taxonomy

= Query Interfaces: Multiple

single vs. multiple
query interfaces | :_l

41
-

ous stores

« MultiStore
Single interface, hetegoliey

- PolyStore ?@‘"’ |
Multiple interfaces, heterogenous stores

- . EE . S B S . . E—,

-~
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Loosely vs. Tightly Coupled

Loosely

user | Query (like a data integration scenario)
Interface

Data: External

Query Engine Store Autonomy: [EIe]y

Access: Read-Only

Local Config.: No

Data Quality: Little control

a t 1 S |

10111 N 11011 CRM _s 00111
A~ 01001 'ERP| > 01011 > 11011
SUPPORT

department A  department B department C

Semantic Het.: Possible
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Loosely vs. Tightly Coupled

— Loosely
user | Query (like a data integration scenario)
: Interface

Data: External
Store Autonomy: High

Access: Read-Only

Local Config.: No

Data Quality: Little control

a t 1 S |

10111 N 11011 CRM _s 00111
A~ 01001 'ERP| > 01011 > 11011
SUPPORT

department A  department B department C

Semantic Het.: Possible

Polyglot Data Management: State of the Art & Open Challenges



Loosely vs. Tightly Coupled

Tightly

user £ Query admin / (like a distributed system)
Interface A A ovner

Data: Internal

Query Engine Store Autonomy: N
Access: Write & Read

Local Config.: Yes

Data Quality: High control

able to migrate data able to reconfigure

between stores individual stores Semantic Het.: None
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Evaluation Framework

+ Heterogeneity BigDAWG Apache Drill Myria
Data Stores, Processing Engines _
1 ® & Query Interfaces Heterogeneity
~n . Autonomy
'r"" Association, Execution & Evolution Autonomy Optimality
O Transparency
-+ Location & Transformation
™ Flexibility
Schema, Interface & Architectural
/, Optimality
oll | |5 Federated Plan & Data Placement Transparency Flexibility

Tan et al., Enabling Query Processing across Heterogeneous Data Models: A Survey, IEEE BigData, 2017.

Polyglot Data Management: State of the Art & Open Challenges



Part |l

Basic Techniques
& Concepts
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Basic Techniques & Concepts: Overview

,!, Mediator-Wrapper Architecture
sh o Popular architecture of integration systems

"’f Schema Mapping Languages /
.(_* How to model relationships between schemas?
Joins

How to combine data from different stores?

i ] Cross-Platform Query Planning
e 0 How to optimize queries across stores?
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Mediator-Wrapper Architecture

SQL
[

global Tasks:
* build query plan

« decompose query

e determine join order
Mediator e push subqueries
« orchastrate query execution
* combine subquery results

Query
Interface schema

export
memm SChema Wrapper

Tasks:

 translate query in local
language / schema

« transform result records to

- global schema

local schemas

JSON SQL
£
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Schema Mapping Languages
2

Query
Interface

ﬂ G— global Global-as-View (GaV)

schema

| Flexibility: Low

X Query Processing: EEnleE

\ Number Views: Low
Complexity Views: High

a / \ Modeling Power: Medium

e—— u == ——

local schemas

G1 2 S1 x (S2 x S3)
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Schema Mapping Languages
G1 G2

Low

Simple

Query R R glObaI GIObaI'aS'VleW (GaV)
Interface {1 B schema
Flexibility:
G2 2 my(o(S1)) US3 /U Query Processing:

Number Views:
Complexity Views:

Modeling Power:

local schemas

Low
High

Medium
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Schema Mapping Languages
G1 G2

Query A lobal Local-as-View (LaV)
Interface i B schema
I Flexibility: High
O-C
$2 € G1 x 0.(G2) / QU= fFisesssel . Complex

Number Views: High
Complexity Views: Low

Modeling Power: Medium

local schemas
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Schema Mapping Languages
2

G1 G

schema

Query
Interface

S2 x S3 € G1 x 6,.(G2)

local schemas

Global-Local-as-View (GLaV)

Flexibility: High

QUENARPFOCESSING I 07011 o][=)
Number Views: Medium
Complexity Views: Low - High

Modeling Power: High
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Join Operators, Frameworks & Algorithms

& = Distributed :
%) Data ”0 Network & E 6= Parallel. % Spatio-
LIVE Streams __ Data Skews 8- 2 0Pls /O temporal

Ajoin (2021)
FastJoin (2019)
ScaleJoin (2016)
BiStream (2015)

FastJoin (2019) « GPU-NL Join (2021)
SharesSkew (2018) < Squirreldoin (2017)
SquirrelJoin (2017) Flow-Join (2016)
Flow-Join (2016) Track Join (2014)

k-SDJoin (2020)
HyMJ (2019)
TL-Join (2019)

Polyglot Data Management  Limited store capabilities:
« Store is not able to perform joins
« Store is not able to provide all records
« Store returns records at irregular frequency
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Bind Join (Fetch-Match Strategy)

ﬂﬂ-ﬂ SELECT* . Scenario:

XY RS el &, 2 « Stores are not able
7 5 PQ Wi WHERE S1.A=S2.Y to perform joins
11 5 UV W AND S1.B = 5;

. * Mediator cannot ship
Mediator data between stores

* |Subquery1| « |Subquery?2]

Without IN-subquery support:

SELECT * SELECT * ..
n r r join value x € A

FROM S FROM S2 One query per join value
WHERE B = 5; WHERE Y IN (2,7,11,...); SELECT *

FROM S2

WHERE Y = x;

Y « Fast access per index
= .
g — « Used in CloudMdsQL and

ESTOCADA
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Double Pipelined Symmetric Hash Join

« Using two hash tables
OUtP“t . insert new record in own hash

partitions partitions * probe with other hash for
of Store A of Store B potential join partners

= « Symmetry reduces risks of blocking
o P> 4
s A 28 ,’,’ . .
§ N  Pipelining (records are pushed
/«"~\\ immediately to next operator)
insert _-“probe rob\e\‘\ insert . . . .
P & S~ « XJoin: Spills partitions to disk
record r record s * Enables larger data sets
hash(r) =i hash(s) = j « Allows more parallelism
1\ 1\ * Reduces down times
Store A Store B

Urhan et al., XJoin: A Reactively-Scheduled Pipelined Join Operator,
IEEE Data Eng. Bull. 23(2), 2000.
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ZigZag Join (JEN)

* Join between

A~ SELECT* FROMD, H « (distributed) RDBMS D
‘- WHERE D.A = H.Y ANDD.B=5AND H.Z = 4; . HDFSH
* Assumptions:
* [H[ > D]
D T  Local predicates not selective
_ B « Hash h for repartitionin
ARz = e AND Y IN BF,, P J
- —— o
1001010 Local selection in D
0001100 ,
BF Send bloom filter BF .
Distributed o . o
RDBMS Local & Join selection in H
D o —— Send bloom filter BF .
1001010 \/ _
Sobiion L % Shuffle H* using h
BF,,. h(H*)

Tian et al., Joins for Hybrid Warehouses: Exploiting Massive Parallelism
in Hadoop and Enterprise Data Warehouses, EDBT, 2015.
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ZigZag Join (JEN)

e Join between
A~ SELECT* FROMD, H « (distributed) RDBMS D
‘- WHERE D.A = H.Y AND D.B =5 AND H.Z = 4; . HDFSH
* Assumptions:
* |H| > |D|
e b HD e JOIN Dex AND H « Local predicates not selective
WHERE A IN BF,,. - « Hash h for repartitioning
Join selection in D
EmEEm S L
h(D**) Distribute D** to HDFS
Distributed partitions using h
RDgMS Join D** and H*
- (+ group by & aggregate)
EmEEm Send join result
HD

Tian et al., Joins for Hybrid Warehouses: Exploiting Massive Parallelism
in Hadoop and Enterprise Data Warehouses, EDBT, 2015.

Polyglot Data Management: State of the Art & Open Challenges




Cross-Platform Query Planning

( )

Single Application Query
(€9, Us:-Case) Constraints:
_ A » Service Level Objectives
Planning: : Fi.S,perat" n Qz’ﬁry « Find efficient Migrations in
- Map o.perators to stores LR * Path Matches platform network w.r.t.
* ggregation . :
* NP-hard for discrete sets \;___ Grouping v Y, computing resources
« Add migrations of data or r : 4
operators Placement Planning -
h < iles

——

\g Google Cloud

I Recommen_ I Storage

- Nested . .
Billing Data | dation Engine —

& Amazon Elastic

iend T ll. MapReduce

Frien K Session data |

Application Da

network Cached data | Search Index | .
| & metrics —

:.-. N . .
.. theegrcz:p4l-1jdatabase é redis ‘ mongoDB e

>

cassandra

asticsearch.
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Cross-Platform Query Planning

M global _
schema Tasks:

Query Interface

* Qperator plan
Mediator « Select platforms with
mappings for operations
[Mapping M L Fhe o e J « Push-down operations and
+_Convert - Group link platforms with migrations

ey : . Model

Parallelize @ Cardinality Join and Merge

n A u o u m
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Shapes — Sequential

Hint:

« Layered topology placement

» Single platform support of
(special-filter) operations

« Forward result to next store

D1

Network:

* Loading complete data set or

« Use streaming (distributed stream
support) — Volcano model
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Shapes — Hierarchy

SQL WideColumn
D1 T po [—— Hint:
C * Replicated topology
placement

| « Decomposition for multiple

O T sources (S1 & S2)

“ ¢ B—A  Parallel execution

l Migrate * Decomposition under actual

to model system deployment (same

node, but different stores)

Network:

,m « Symmetric vs. asymmetric
join placement

e.g. bind-join
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Shapes — Diamond

SQL

Hint:

e « Diamond topology

e Same as hierarchy-shape

 Partitioning of single data sets
(e.g., reducing-workload-
partitioning)

D2 D1
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Operator Placement — Approaches

= Model-based: different strategies ]
for placement solution | ' | | | _.-.'.:.':.',’-.'.-.

o Hierarchical Placement PR

> Pruned Space Placement r'TrH _I'I'I |_|'|1 |]1 |J1 |J1 |J1 r'1 IJ1 |J1 |J1 |J1 r'1

o ReIaX-Expand_SO|Ve computing resources

= Model-free: provide direct placement seek ﬂ
o Greedy First-match : “
o Local optimization on greedy-first :
o Tabu search

= ML-based:
o Explore placement decision for similar workloads

o Learn latency of operator mappings
o Learn cardinalities of topologies (JOP)

\IXIXl/
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Operator Placement — Model-free Tactics

* Neighbour lookup

Resolve dependencies Fixed operators as initial
between platforms and placement and greedy
operators expansion along logical plan

Co-Locate operators on
same platforms

Move single operator to Switch platform by adding Enumerate multiple plans
another location to reduce migration between source (repeat step 3., 4. and 5.
estimated cost and latency and target until threshold)

« Local optima problem  Terminate, when no
« May split co-location further improvement
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Current Systems
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Overview: Polyglot Data Management Systems

Multistore Polystore
PolyBase
Loosely
coupled
Tightly RHEEM ESTOCADA
coupled
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PolyBase

__________ control and
* Virtual data integration solution The SQL Server Polybase Architecture ecton
from Microsoft — Data flow
EE only All editions All editions
= Distributed com pute engine “Head" node “Compute” node “Compute” node
integrated with MS SQL Server e | e
DW dbs ‘ SQL Engine. \ Dwdbs [ SOL Englne DWdbs | SL Eng:lﬂe
oy : I E— R—— Need
» Query data where it lives (T-SQL): i e s i
o Oracle Engine - - """"" Add compute
o Mon ODB Polybase Data Polybase Data Polybase Data nodes
g Mover_nent Movement

(¢]

Teradata Scan or pushdown

Hadoop-CIuster mpdwsvc.exe | Scale out with partitions
shuffle
Cosmos-DB Your data sources

gi-s(:; ?\le:c\ble Store — y Teraoar  Microsoft cloudera AR

(¢]

(¢]

(¢]

(¢]

ORACLE HDFS

Example from: PolyBase Extension Group Model: https://docs.microsoft.com/de-de/sql/
relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16,
Accessed: June 2022
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https://docs.microsoft.com/de-de/sql/
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16

PolyBase — Query Concept

. F Y- H CREATE EXTERNAL DATA SOURCE external_data_source_name
- Manual schema definition by Admin WITH (LOCATION = '<mongodb://<server>[:<port>]>"

[ [ , 1 CREDENTIAL = <credential_name> ]
[ , 1 CONNECTION_OPTIONS = '<key_value_pairs>'[,...1]
[ , ] PUSHDOWN = { ON | OFF } 1)

» Create external data source in T-SQL
(e.g., MongoDB)
o Global schema in MS SQL

o Definition of relational view on source CREATE EXTERNAL TABLE [MongoDbRandomData] (

[
[
[ ;1]

; [_id] NVARCHAR(24) COLLATE SQL_Latinl_General_CP1_CI_AS NOT NULL,
such as I\/IongoDB collection [RandomData_friends_id] INT,
o User_deflned Statlstlcs for source [RandomData_tags] NVARCHAR(MAX) COLLATE SQL_Latinl_General_CP1_CI_AS)
WITH (
- MS SQL applies flattening rules on UGN 10 Do RETE O D

) i DATA_SOURCE=[MongoDb])
hierarchial source models

= Bridge the heterogeneity of models

Example from: PolyBase Extension Group Model: https://docs.microsoft.com/de-de/sql/
relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16,
Accessed: June 2022
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https://docs.microsoft.com/de-de/sql/
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16

PolyBase — Optimization Model

= Distributed query execution across
SQL Servers

PolyBase scale-out groups

| PolyBase Head node Compute node Compute node
queries SOL Server Nl Corver SOl Server
g . ‘_l_’ SQL Server SQL Server SQL Server
o Read external partitioning metadata 2016 2016 2016

. PolyBase PolyBase PolyBase

o Split MS SQL source and remote source DM DMs
. . PolyBase

o Push-down operations where possible

| PolyBase Scale out

= Plugin architecture for SQL-Server
o Mapping of T-SQL to stores

o SCale_Out Compute node Na(:;[e)[r:]st;de Data node Data node Data node Data node
> PolyBase waits for source data to be v v v v
processed

File system File system File system File system

Hadoop Cluster

Example from: PolyBase Extension Group Model: https://docs.microsoft.com/en-us/sql/
relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16,
Accessed: August 2022
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https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16

Overview: Polyglot Data Management Systems

Multistore Polystore
PolyBase
Loosely
coupled
Tightly RHEEM ESTOCADA
coupled
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RHEEM — Plan Enumeration

= Input: Directed RHEEM dataflow plan
- RheemLatin DSL
o RheemStudio

o Java, Scala, Python
o REST Endpoint

= Output: Inflated operator plan with
migration steps between platforms

o Map fix RHEEM operator to execution
platform

o Apply mappings between single logical
operators to n* execution operators

> Resolve minimum conversion tree to
transfer data between multiple platforms

ORHEEM operator @ Spark execution operator @ JavaStreams execution operator
it inflated operator [JUDF

......

i N L a T, swees . .
-~ (_Regucssy \Limappings
(c)ﬂ(b) - | (a) 1-to-1 mapping ;
; :.._ ............... I\/.J ........... E (b) 1—t0—n mapping é
oupt (c) n-to-1 mapping
NS _(d) mto-n mapping;
HE.)
[ Map i
| .
~—1 : ] ; 3
i P ]
. Ny [inflation: | vl N GroupBy
ReduceBy | [  ReduceBy ReduceBy ~—
N
- N N ~ Map
Y
b —
estimate [2221:'1&3)159’/00] [2.45s, 3.33s] ?-O Stt
: conf: 80% estimate

Kruse et al., RHEEMix in the Data Jungle-A Cross-Platform Query Optimizer, VLDB J., 2020.
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RHEEM

Ci oo 000
. 000 000

(BIGDANSINGJ MLAPP) (TRUTHFINDING)

= Decoupling application task from

(multi-platform) execution == Sn_
» Mapping of platform-agnostic operator MULTI-PLATFORM DATA PROCESSING PhVSItca/
operaiors
e \ “ Multi-Platform \
to platform-specific operators using LAV [Query Opﬁmizer] (900000
| ec00000
= Resolve Migrations using Channel i s |
. mappings .Q‘/(—....\
Conversion Graph 000000
000000 |
Execulti
= Supports |op2f§t£g

I 20
00 00000
000 00000

Hadoop) ( Spark (Glraph LPostgres)

. Logical Rh Executi
= Developed as Apache Wayang (Incubating) & o ™ Commor Dowrstor

o InMemory (Java), GraphChi
o PostgreSQL
o Flink, Spark

Agrawal et al., Rheem: Enabling multi-platform task execution, SIGMOD, 2018.
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RHEEM — Plan Optimization

cost,
= First version: genetic cost-model Operator Cost
learner, loss reduction [t
> operator execution costs Parametors Resource Cost ||]
i .o . (automatically learned) zV Uy
o Samples cardinalities and reduce size : - 2 #oores=4
estimation function e.g., Filter: card % Resource Uttization || Resource Unit Gast [+~ S5 rokhi= 70
. . .. T Hard S .
(Filter)= c;,(Filter) *o; for selectivity f - C o rovdon)
a-rl Cardinality |i|
= ML version (Robopt): supervised Selectivities
(computed or provided)

fine-level cost-tuning
o Encodes logical operator-, platforms and

: Robopt ,
movements into vectors logical plan Priority-based ) execution plan
> Vectorized execution plan (P’affOfm'aQ”OSﬁC) o L (platform-specific)
n

Kruse et al., RHEEMix in the Data Jungle-A Cross-Platform Query Optimizer, VLDB J., 2020.

(vectonzed execution) | cheapest plan| ReduceBy‘(sum‘ &_couni) |

P
|_HeduceBy(surp_&_counr T

o ML-model selects enumerated vector

. . . P ] Plan Plan Prunlng Plan @
plans with platform-agnostic operations Map(2b3] Vectorzation | ML m%t')me oo o o —
- Optimizes the order of executing i (vector-based) |

RHEEM operators

Kaoudi et al., ML-based cross-platform query optimization, ICDE, 2020.
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Overview: Polyglot Data Management Systems

Multistore Polystore
PolyBase
Loosely
coupled
Tightly RHEEM ESTOCADA
coupled
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BigDAWG - Overview and Architecture

. Developed at: Visualizations Clients Applications

Pharii-ta B 0000
Center for Big Data (MIT)

- Between: 2015 and 2018 T I

= Use Cases:
Shim Shim Shim
o Medical applications (MIMIC II) Shim Shim

o Ocean Metagenomic Analysis

B Cast B Cast B
- Relational Arra
BigDAWG Polystore 2

" o @ - E V| 4
@ Wi & & .0

Architecture figure: Gadepally et al., The BigDAWG polystore system and architecture, IEEE HPEC, 2016.
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BigDAWG - [slands of Information

= 3 components of virtual islands:

?

o Data model
> Query language @ @ Relational O
. 7

> Storage engines Island
= Degenerate islands to achieve semantic 4<

completeness

. . . . . bdarray ( Array scope

= Shims: semantical mapping between island filter (

and data store bdcast ( Cast operation

bdrel (SELECT val FROM table),

= Casts and Scope: accessing multiple P oS g o ational scope

. “<val:double> [i=0:*,100,0] ",

islands arcal

. ] . ] val < 35)

= Extensible by implementing new islands )

Example from: O’Brien, Polystore Systems for Complex Data Management, IEEE HPEC, 2017.
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BigDAWG — Performance Profiling

= Training mode:
o all plans of a query are executed
o the best is stored in the preference matrix

= Optimized mode:

o either the best plan from the preference matrix
o Or a random plan is executed

= Opportunistic mode:
o Similar to optimized mode v =
o Additional evaluations during times of low system utilization
o Additional evaluations if new stores become available
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BigDAWG — Semantic Equivalence

AFL: multiply(a, b) Multiply SciDB

= ,Semantically equivalent queries [...] are

SQL: SELECT a.row_num, b.col num,

SUbStitUtable“ SUM (a.value*b.value)
FROM a, b
= Encode intersecting sets of semantic capabilities CEES £.@ell B S D.Ea e
. . . GROUP BY a.row_num,
USIng a Semantlc Iattlce b.col_ num; Multiply Relational Database
= Capture semantic equivalent (sub-)queries in a (ATL:multip
. . . i SQL:aggregate(join(a,b)) ;
semantic dictionary (Equivalence Rule) ,All values for (int64,

integer) “}

o
000

Relational Array Virtual Islands

Equivalence Rule

= 3 types of semantic containment:
o Order of result entries
o EXxpressivness of semantics

o Backward compatibility
for primitive types

Relational

Optimizer-facing Lattice

User-facing Islands

Graph Engine 4 . Engine 1 . Engine 2 Engine3 Degenerate Islands
Figures from: She et al., BigDAWG Polystore Query Optimization Through Semantic Equivalences, IEEE HPEC, 2016.
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Overview: Polyglot Data Management Systems

Multistore Polystore
PolyBase
Loosely
coupled
Tightly RHEEM ESTOCADA
coupled
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ESTOCADA

= Developed by University of San Diego and INRIA*

ESTOCADA

= Focus on view-based Query Rewriting

. , Query Query Evaluator [€
(Local-as-view) Clent
Store Data A

» Leveraging possible data redundancy and — Y
] Stor_age > Storage Descriptor < Query E)fecutlon
previously computed query results for Advisor Manager Fngne
A
improving performance —
= Can be built into existing Polystores \ |

(e.g., BIgDAWG, SparkSQL, Tatooine) ‘ 0

A A
Document| |Key-Value
Store Store

v

\
\ 4
Massively Nested Relations Relational
Parallel System Store Store

» Functional demonstration based on MIMIC Il dataset

* Institut national de recherche en sciences et technologies du numérique Architecture figure: Bugiotti et al., Invisible Glue: Scalable Self-Tuning Multi-Stores, CIDR, 2015.
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ESTOCADA — Virtual Views

= Relational model as pivot model

Collectiony(name, id) Collection membership
= Virtual views on underlying models Childj(parentld, childld, key, type)
(encoded relationally) Eqy(x,y) Value Equalitiy semantics
Valuej(x,y) Value assignment

= Differences in semantics modeled
by integrity contraints

Collectionj(n,x) A Collectionj(n,y) — x=y (1)
> tuple-generating dependencies Child;(p, c1. k. t) A Child)(p,cs. k,t) — ¢1 = c (2)
o equality-generating dependencies Eqj(x,y) — Eqj(y,x) (3)
: : Eqj(x,y) AEqj(y.z) — Eqj(x,z) (4)

= Encodings/Models hidden (only Eqy(p, p') A Childy(p,c. k,t) —
necessary for query rewriting) 3¢’ Eqy(c, ¢’) A Childy(p', &', k, t) )
Valuej(i,v1) A Valuej(i,v;) — v =70 (6)

Example: Alotaibi et al., Towards Scalable Hybrid Stores: Constraint-Based Rewriting to the Rescue, SIGMOD, 2019.
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ESTOCADA - Query Language and Rewriting

QBTXM; Query Rewriting:

= Block-based integration language = Optimized version of PACB algorithm

= Each block contains native query language = Query rewriting using all virtual as well as
> FOR clause: Bind variables from stores materialized views

o WHERE clause: Selections on bound variables
o RETURN clause: Construct new data based on

variable bindings Logical Query Plan:

= Translation of PACB result into logical plan

FOR AJ:{SELECT j-patlentlD 35 patientiD, . , - Subqueries and supported operators pushed
AsterixDB query A.report AS report down to stores
FROM MIMIC M, M.admissions A}
RETURN SJ:{"patientID":patientID, > Handling of unsupported operators and
SOLR result "admissionID":admissionID, L ] i
model "report":report} cross-store-joins by the integration layer

Example: Alotaibi et al., ESTOCADA: Towards Scalable Polystore Systems, PVLDB, 2020.
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Overview: Polyglot Data Management Systems

Multistore Polystore
PolyBase
Loosely
coupled
Tightly RHEEM ESTOCADA
coupled
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CloudMdsQL

= Functional SQL-like language implemented in LeanXcale (Research system)

= Multistore with (current) support for T2{x int, y int)Cxcb = ( SELECT x, y FROM A )
T2 (x int, z array)@mongo = {*
o PostgresQL o Apache Spark db.B.find( {$1t: {x, 10}}, {x:1, z:1, id:0} )
*}
- MongoDB o (Python) SELECT T1.x, T2.z

FROM T1, T2

. . l.x = T2. . = 3
= Abtraction layer for data retrieval e B

> Preserves the semantics of the underlying data stores
o A query may contain embedded (native) subqueries
o Python functions to query APIl-only query interfaces

= Mediator/wrapper architecture

» Relational model as internal data model

| EANSZCALE

65

Code Example: Kolev et al., The CloudMdsQL Multistore System, SIGMOD, 2016.
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CloudMdsQL — Query Execution

= Queries usually consist of subqueries and an integration SELECT statement

Tl(x int, y int)Q@rdb = ( SELECT x, y FROM A )
T2 (x int, z array)@mongo = {*

db.B.find( {$1t: {x, 10}}, {x:1, z:1, id:0} )
*}

SELECT Tl.x, T2.z

FROM T1, T2

WHERE Tl.x = T2.x

= The system creates query execution plans (QEPs) T1.x=T2.x

o Subqueries are pushed down to the wrappers/stores
o Subquery results are transformed into

(X int, ¥y int)Erdb (X int, z array) Emongo
a relational format P
o Relational data is combined using Bind Joins SELECT x, y {S§1t: {x, 10}},
FROM A {x:1, z:1, id:0}
)
Code Example: Kolev et al., The CloudMdsQL Multistore System, SIGMOD, 2016.
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CloudMdsQL — Query Optimization

= The optimization search space for consists of all query rewritings by
> Pushing down select operations

o Expressing Bind Joins
> Join ordering

= Search space is small, thus a simple exhaustive search strategy is used

= Usage of a simple catalog for comparing rewritten queries:

o Data collection cardinalities o Attribute selectivities
o [ndexes o Simple cost models

= |_ocal cost models provided by probing and sampling by the wrappers
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Wrap Up: Polyglot Data Management Systems

Automatic cross- Multistore Data virtualization, single T-SQL
platform optimization, POIyBase interface, data fabric (Microsoft)

operator placement & |

data migration Virtual views, constrained based Application-driven,
customizable data

islands & semantic
equivalence

CL ] data transformation & block-
based integration language

_ _ RHEEM ESTOCADA
Extensible pivot query

language, data store
agnostic (LeanXcale)

1 I)’IJI (A |

CloudMdsQL BigDAWG

Polyglot Data Management: State of the Art & Open Challenges 68




PartV

Open Challenges
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Open Challenges: Overview

Fd Unified Access vs. Unique Features
How to design a suitable interface?

@8 Ad Hoc Data Manipulation
' How to push user updates to the stores?

& Adaptive Reconfiguration
How to react to changing requirements?

fix) Cross-System Query Optimization
How to find the optimal query plan?

) Streaming & Real-Time Readiness
I 7  How to integrate real time requirements?

1 Multi-Model Schema Management
=" How to update schema mappings?
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Open Challenges: (i) Unified Access vs. Unique Features

,Smallest common denominator* Mediator query language with

embedded store query languages

V" Simple to build
/ Not very powerful
/ Loss of semantic/functional features

v Easily extensible

v Full semantic/functional complexity

/ Does not hide complexity

/ Prevents intra store optimization
potential

T2 (x int, z array)@mongo = {*

9)9l9(

*}

SELECT Tl.x, T2.z
FROM T1, T2

WHERE Tl.x = T2.x

(CCco

Update

Code Examples: Kolev et al., The CloudMdsQL Multistore System. SIGMOD, 2016.
Ong et al., The SQL++ Semi-structured Data Model and Query Language. arxiv.org, 2014.

Tl(x int, y int)@rdb = ( SELECT x, y FROM A )

db.B.find( {$1lt: {x, 10}}, {x:1, z:1, _id:0} )

CloudMdsQL

All-powerful query language

v" Hidden complexity

v Full semantic/functional complexity
# Super complex to build

7 Extensibility challenging

/ Feasible?

Geal SQL++
complex 2 yes,
null eq null : null,
null and true : null

(r=r)
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Open Challenges: (i) Ad Hoc Data Manipulation

UPDATE T1 T ERCECECE SELECTID,A* 1.1 + BAS D I?“%
SETA=A*1.1+B FROM T1 T
WHERE C =, WI*; Mediator WHERE C = ,WI*;

UPDATE T1 UPDATE T1

SETA=95 SETA =85

WHERE ID = 2; WHERE ID = 3;

Two round approach
1. Determine all records to be updated
2. Update each record based on its ID

Is there any efficient one round
approach?
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Open Challenges: (i) Ad Hoc Data Manipulation

UPDATE T1 T ERCHCE

SETA=A*1.1+B
WHERE C = ,WI¥; Mediator

Polyglot Data Management: State of the Art & Open Challenges

Further Challenges:

How to ensure cross-store
« Atomicity, Isolation & Durability
* logging
* locking
* recovery
« Consistency
* check constraints
« referential integrity

if individual stores do not support
such mechanisms?



Open Challenges: (iii) Adaptive Reconfiguration

= Detecting changing requirements or workloads?
o Fluctuating traffic throughout the day
o Singular events (e.g. Black Friday)
o Additional users in a multi-tenant environment

= Adapting/reconfiguring the system

o Adding or removing resources
o Reorganization (e.g. splitting a hot range)

= Changing the system topology

o Data migration between stores
(e.g. write-heavy data to main-memory database)

Polyglot Data Management: State of the Art & Open Challenges
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Open Challenges: (iv) Cross-System Query Optimization

1 T
= Operator Placement o _ o
0.9 proximity to the Pareto dominated objective space
o I i front
Data vs. Operator Shipping ol . |
o Migration Paths i / rfegion ofinte_rest to the decisioq malfer )
N 0.7 (i.e. the pertinency of the solutions in the
. . ] ® B approximation set) |
» Pareto Optimum of Objectives £ °° o _,J
=05 | -
° Latency © 04l objective vector I 1
> Throughput | |
ghp | :
> Planning ool | chvarsity in the | true Pareto front |
] _ ] _ - region of interest /
o Application Objective ol L — — — — — — A |
= ML-based optimization % 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Objective 1

o Hard constraint for query
correctness in optimization

> Join-Ordering for sub-query
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Open Challenges: (v) Streaming & Real-Time Readiness

= Streaming Workloads
o Expose streaming capabilities

o Integrate streaming with storage systems Ry 9

» Push-based features

Updates Dynamic Data

_ Sensors Detectors Moving Obijects
o Triggers, ECA rules |
o Change notifications
= Caching Patient Data
o Materialized views A
o Cache coherence / cache invalidation ‘ll .l
Realtime 4—7 Emm O

Monitoring
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Open Challenges: (vi) Multi-Model Schema Management

« Mappings between global & local

: Schemas

Mediator « fundamental for query rewriting

« cross-model (e.g., SQL < graph)
* Via wrapper

Mappi"g Mapp’"g + Update of Mappings
 Evolution of global schema

* Evolution of local schema
Wrapper * Migration of data between stores
ﬁ’a « Composition/Extraction of Mappings
) for data migration

(

||-
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Further Readings

Towards Polyglot Data Stores

Overview and Open Research Questions

DANIEL GLAKE®, FELIX KIEHN®, and MAREIKE SCHMIDT", Universitat Hamburg
FABIAN PANSE and NORBERT RITTER, Universitiat Hamburg

Nowadays, data-intensive applications face the problem of handling heterogeneous data with sometimes mutually exclusive use cases

NewSQL, NoSQL) for different workloads and use-cases have been developed. However, since each store is only a specialization, this
motivates progress in polyglot data management emerged new systems called Mult- and Polystores. They are trying to access different

stores transparently and combine their capabilities to achieve one or multiple given use-cases. This paper describes representative

Subsequently, we discuss the properties of selected Multi- and Polystores and evaluate them based on given needs illustrated by three
common application use cases. We classify them into functional features, query processing technique, architecture and adaptivity and
reveal a lack of capabilities, especially in changing conditions tightly integration. Finally, we outline the benefits and drawbacks of the

surveyed systems and propose future research directions and current challenges in this area.

CCS Concepts: « Information systems — DBMS engine architectures.

Additional Key Words and Phrases: polyglot persistence, multi-/polystore, data management, adaptivity, query processing.

and soft non-functional goals such as consistency and availability. Since no single platform copes everything, various stores (RDBMS,

real-world use cases for data-intensive applications (OLTP and OLAP). It derives a set of requirements for polyglot data stores.

Enabling Query Processing across Heterogeneous Data Models: A Survey

Ran Tan, Rada Chirkova
Department of Computer Science
North Carolina State University

Raleigh, North Carolina

Email: rtanl@nesw edw, rychirko® nesw. edu

Abstraci—Modern applications often need to manage and
analyze widely diverse datasets that span multiple data models
[11. [21. [3]. [4], [5]. Warchousing the data through Extract-
Transform-Load (ETL) processes can be expensive in such
scenarfos. Transforming disparate data into a single data
model may degrade performance. Further, curating diverse
datasets and maintaining the pipeline can prove to be labor
intensive, As a result, an emerging trend is to shift ihe
focus to federating specialized data stores and enabling query
processing across belerogeneous data models [6. This shift can
bring many advantages: First, systems can natively leverage
multiple data models, which can translate to maximizing the
‘semantic exp of and kveraging
the infernal processing capabilities of component data stores.
Second, federated architectures support query-specific data
integration with just-in-time ir: and

Vijay Gadepally
Lincoln Laboratory
Massachusetts Institute of Technology
Lexington, Massachusetis
Email: vijayg @Il.mit.edu

Timothy G. Mattson
Intel Corporation
Portland, Oregon
Email: timothy.g.mattson @intel.com

events expressed as JSON (JavaScript Object Notation)
documents, social-media data recorded via key-value pairs,
and weather feeds stored in relational tuples to predict traffic
flows. Finally. in data journalism [3]. joumalists work with
Tweat lexls, provided by g
and institutions, and RDF-formatied Linked Open Data to
support content management for writing political articles.
In these and other scenarios, warehousing the data using
Extract-Transform-Load (ETL) processes can he very expen-
sive. First, transforming disparate data into a single chosen
data modzl may degrade performance. Indzed, there appears
1o he no “one size fits all” solution for all markets [14],
[15], as iali models and archit enjoy over-

P
in data warehousing, text searching,

‘which has the potential to reduce the

stream ,' i ‘.‘a.nd scientific Second, curating

complexity and overhead. Projects that focus on
systems in this research area siem from various backgrounds
and address diverse concerns, which could make it difficult to
form a consistent view of the work in this arca. In this survey,
we introduce 3 taxonomy for describing the state of the art and
propose a systematic evaluation framework conducive to un-

of query char in the relevant
systems. We use the framework o assess four representative
implementations: BigDAWG [7], [5]. CloudMdsQL [9]. [10],
Myria [11], [12], and Apache Drill [13)

K - del query p

g: Query-specific data

diverse datasets and maintaining the pipeline could tum out
1o be labor intensive [16]. One major reason is that rules
and functions in ETL scripts do not adapt to changes in
data and analyti i and changes in icati
logic often result in the modification of ETL scripts.

For these and other reasons, a number of projects are
shifting the focus to federating specialized data stores and
enabling query processing across heterogeneous data mod-
els [6]. This shift can bring many advantages. First, the
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