

Polyglot Data Management: State of the Art & Open Challenges

Felix KiehnMareike SchmidtDaniel Glakefelix.kiehn@uni-hamburg.demareike.schmidt-3@uni-hamburg.dedaniel.glake@uni-hamburg.de

Fabian Panse fabian.panse@uni-hamburg.de Wolfram Wingerath wolle@uni-oldenburg.de

Benjamin Wollmer benjamin.wollmer@uni-hamburg.de

Martin Poppinga martin.poppinga@uni-hamburg.de

Norbert Ritter norbert.ritter@uni-hamburg.de

Who We Are

Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

Felix Kiehn

Daniel Glake

Carl von Ossietzky Universität Oldenburg

Wolfram Wingerath

Benjamin Wollmer

Martin Poppinga

Mareike Schmidt

Fabian Panse

Norbert Ritter

Outlook

PART I: Motivation & Database Landscape

PART II: Terminology & Taxonomies

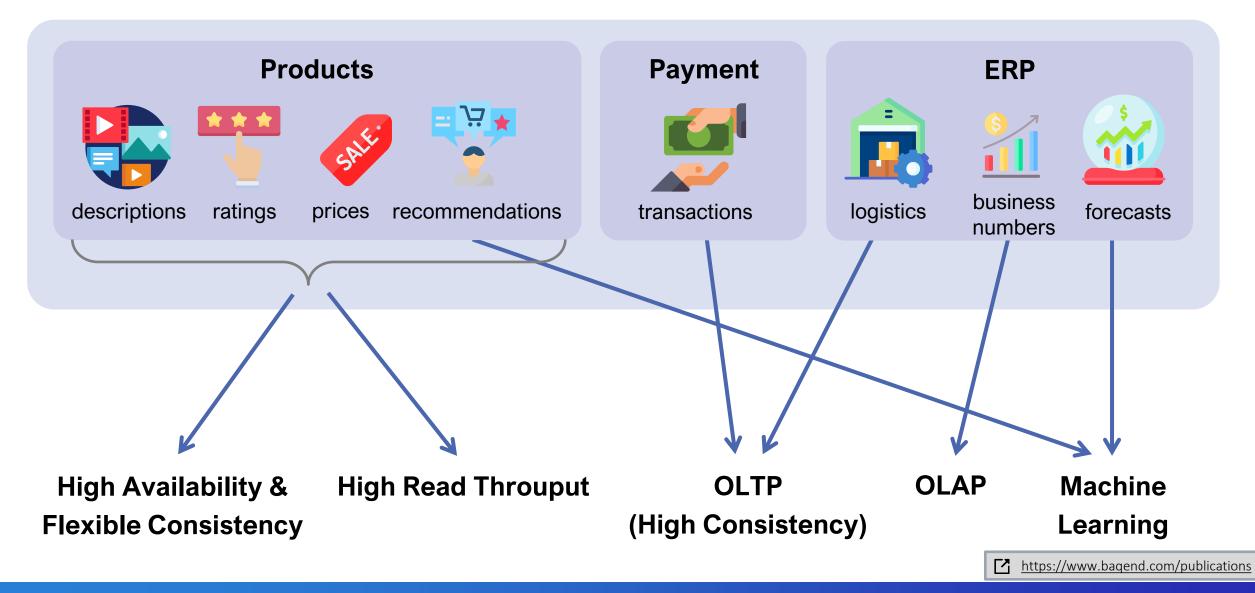
PART III: Basic Techniques & Concepts

PART IV: Current Systems

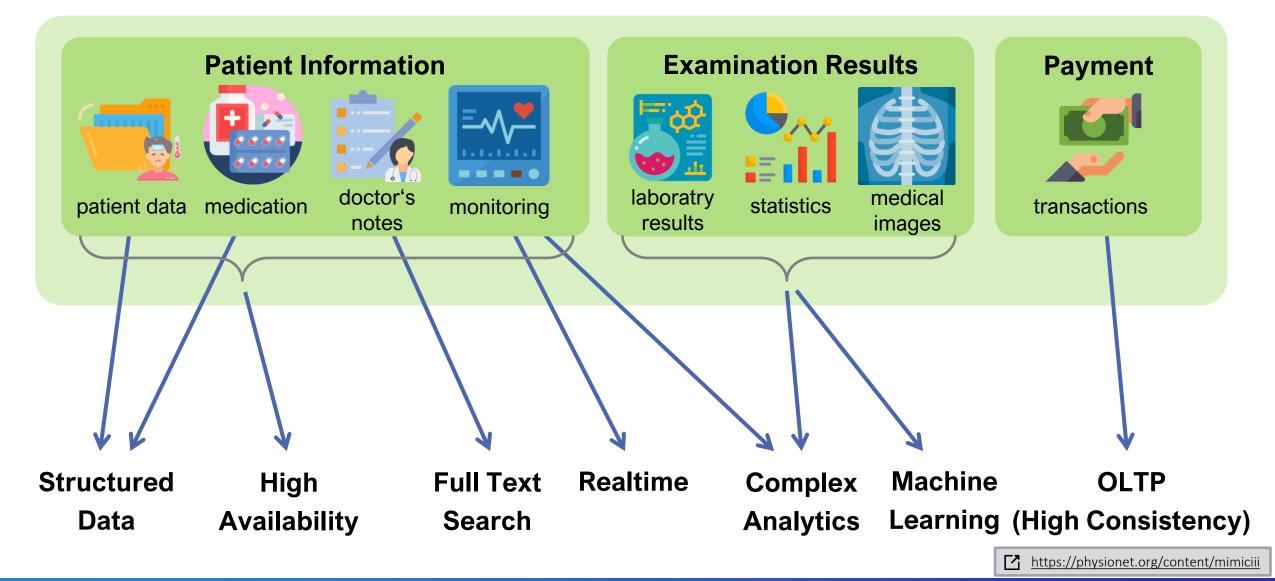
PART V: Open Challenges

Motivation & Database Landscape

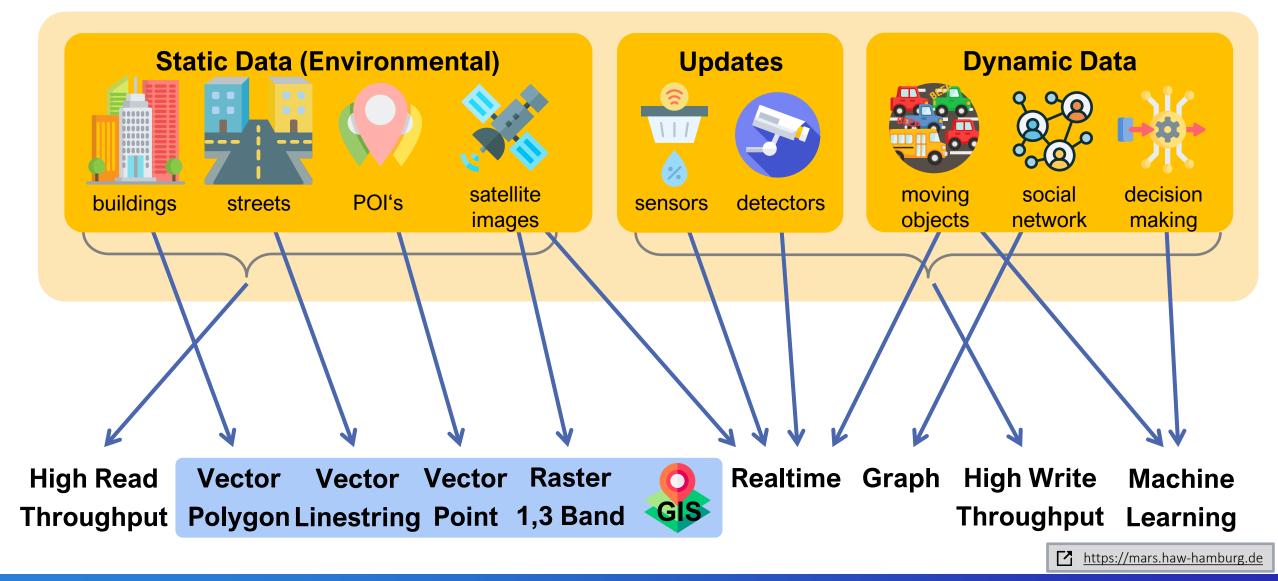
Use Case 1: E-Commerce



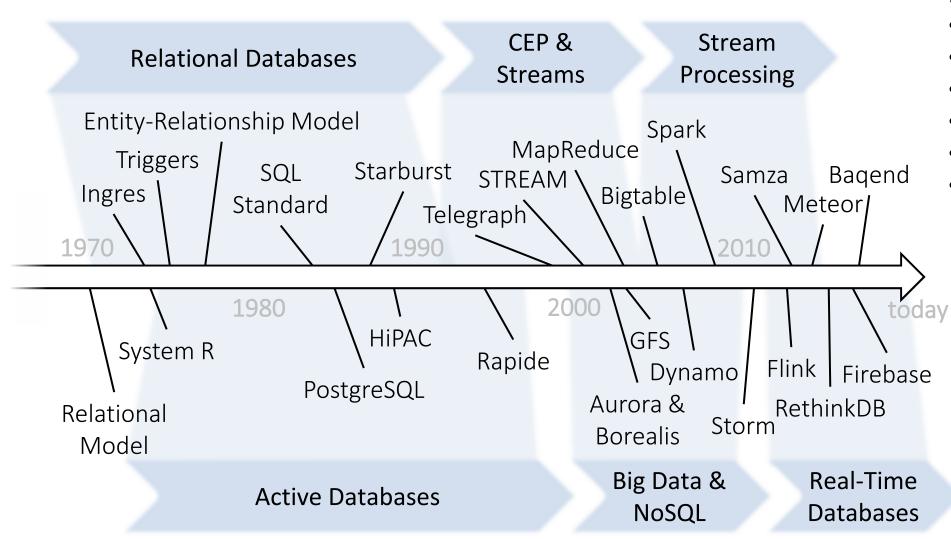
Use Case 2: Medical Application Data (e.g. MIMIC)



Use Case 3: Digital Twin (e.g. MARS)



A Short History of Data Management



Not included:

- Timeseries DBs
- (Geo-)spatial DBs
- Object-oriented DBs
- Probabilistic DBs
- Graph Stores

•

• • •

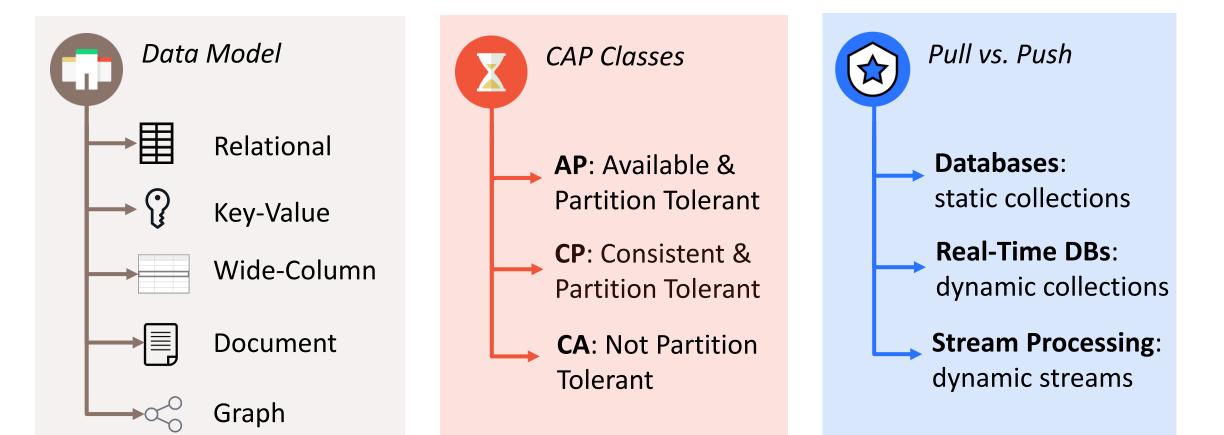
Typical Classification Schemes

Not included:

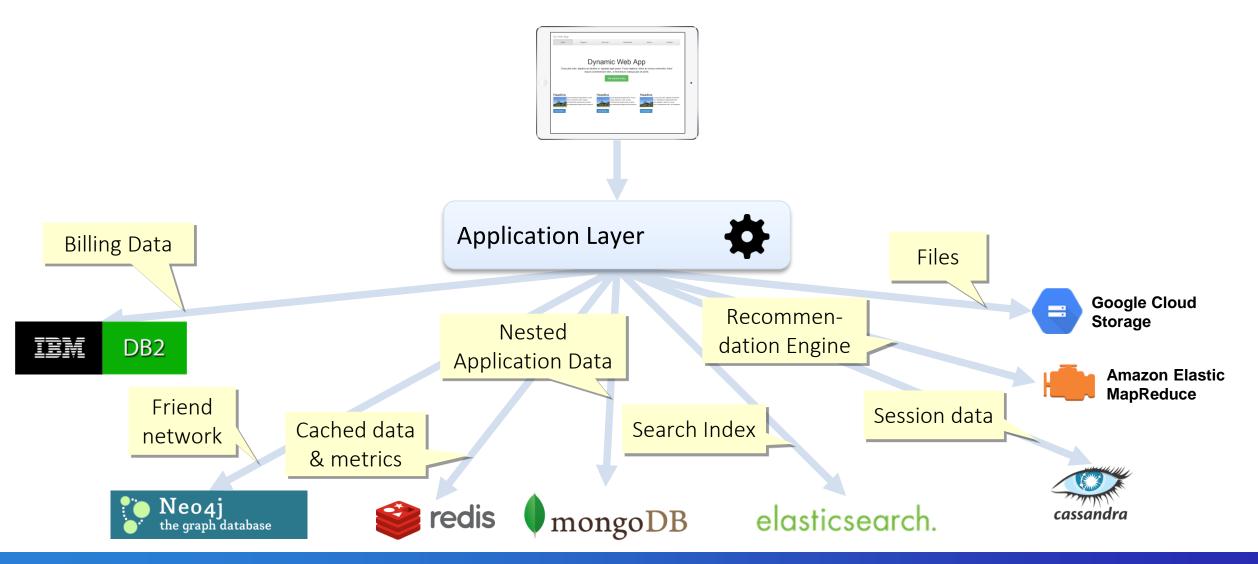
- Functional/non-functional properties
- Cloud vs. on-premise

• ACID vs. BASE

...

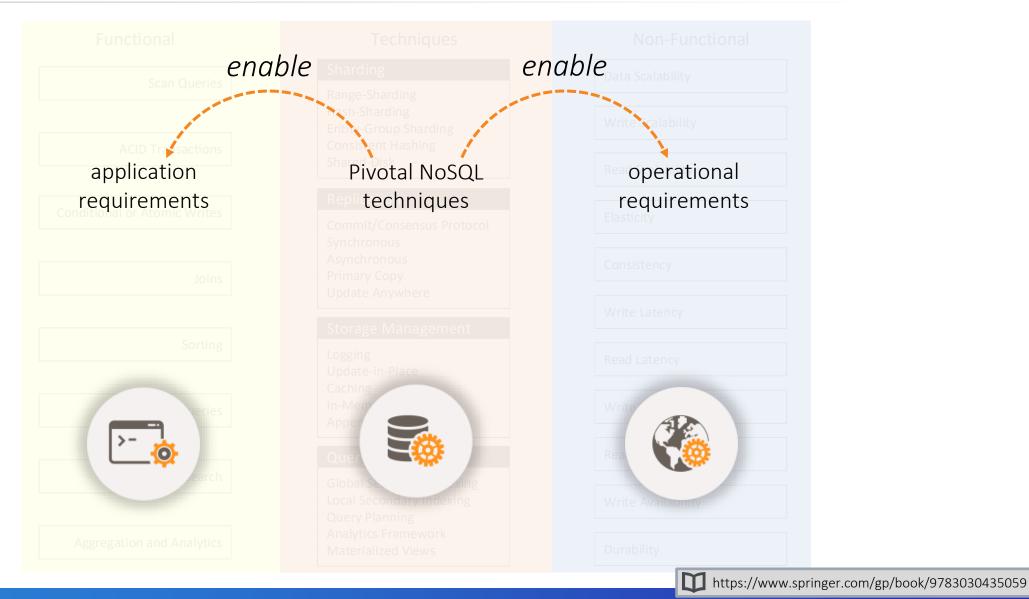


How to Choose The "Right" Database System?



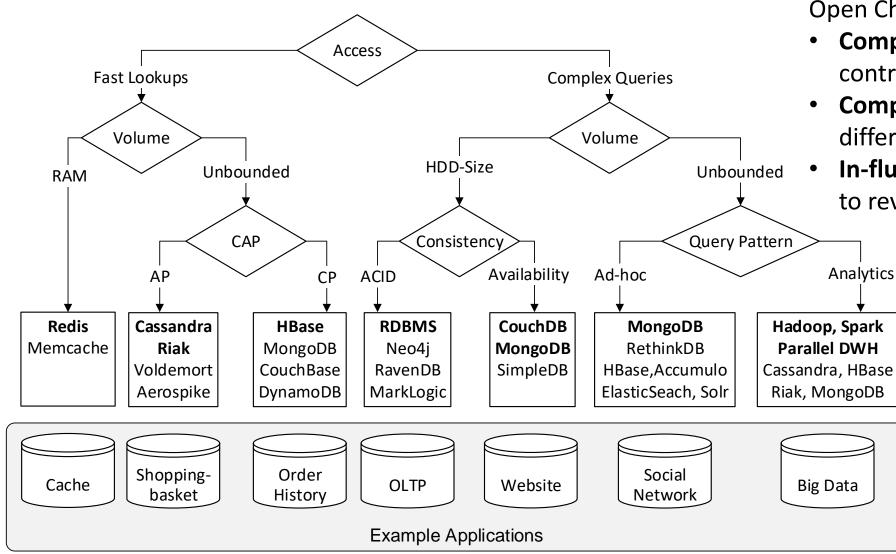
Polyglot Data Management: State of the Art & Open Challenges

NoSQL Toolbox: Requirements vs. Techniques



Polyglot Data Management: State of the Art & Open Challenges

NoSQL Decision Tree



Open Challenges:

- **Complex Trade-Offs** that may contradict one another
- **Complex Architectures** with many different data management systems
- In-flux Requirements: You may have to revisit your decision over time

More on the Topic

SPRINGER BRIEFS IN COMPUTER SCIENCE

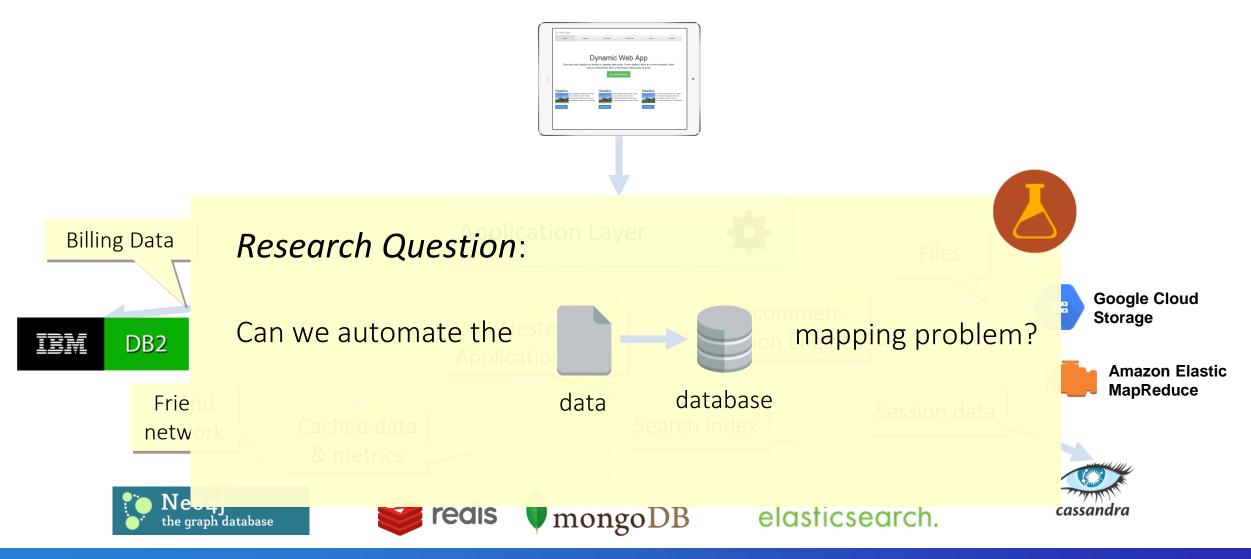
Wolfram Wingerath Norbert Ritter Felix Gessert

Real-Time & Stream Data Management Push-Based Data in Research & Practice

🖉 Springer

For videos & books, visit dbis.hamburg!

Actual Question: How to Build a System That Does All This? How to Choose The "Right" Database System?



Polyglot Data Management: State of the Art & Open Challenges

Terminology & Taxonomies

Terminology & Taxonomies

Polyglot Persistence

Federating (Specialized) Data Stores

Multistores

Modern Federated Database Systems

Hybrid Stores

?????

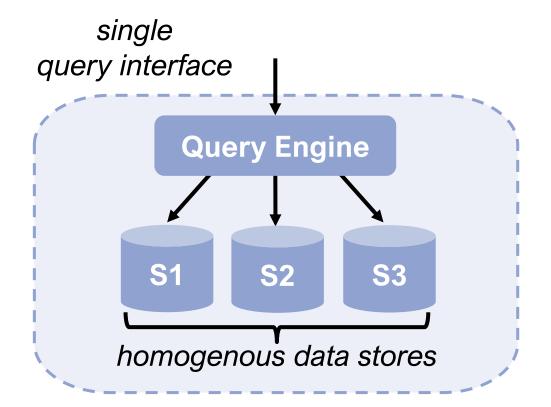
Generalized Data Federation

Multidatabases

- Query Interfaces:
- Data Stores:

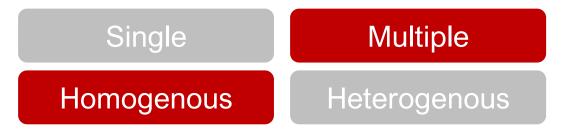
Single	Multiple
Homogenous	Heterogenous

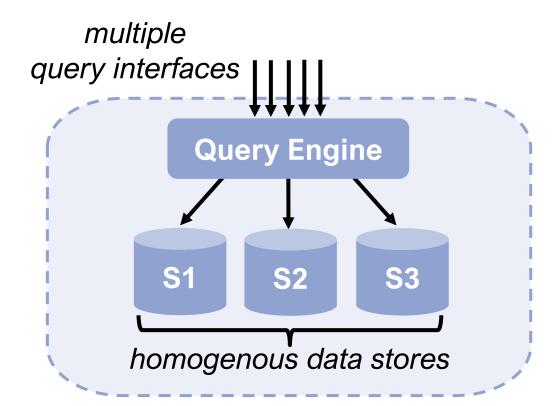
- Query Interfaces:
- Data Stores:



Federated DB System
 Single interface, homogenous stores

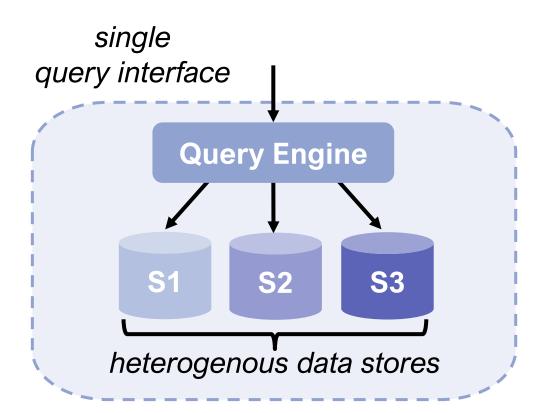
- Query Interfaces:
- Data Stores:

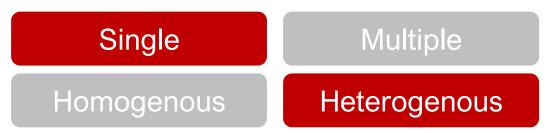




- Federated DB System
 Single interface, homogenous stores
- Polylingual / Polyglot DB System
 Multiple interfaces, homogenous stores

- Query Interfaces:
- Data Stores:



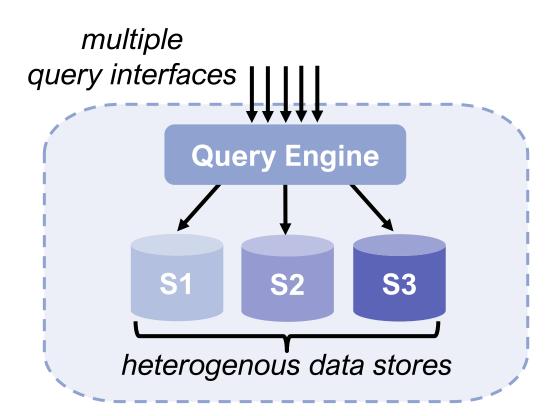


- Federated DB System
 Single interface, homogenous stores
- Polylingual / Polyglot DB System
 Multiple interfaces, homogenous stores

MultiStore

Single interface, heterogenous stores

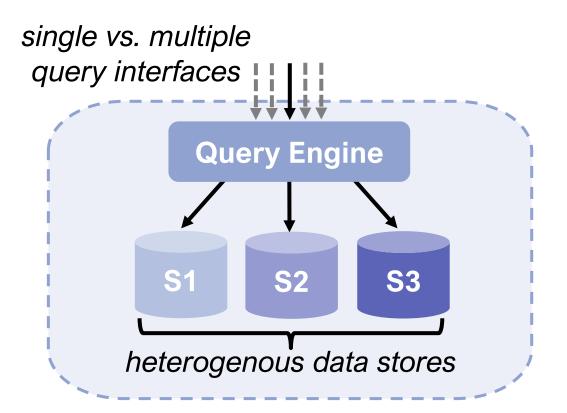
- Query Interfaces:
- Data Stores:

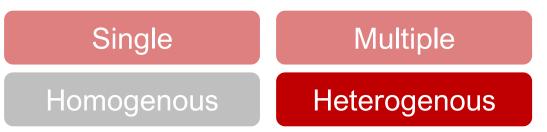


- Federated DB System
 Single interface, homogenous stores
- Polylingual / Polyglot DB System
 Multiple interfaces, homogenous stores
- MultiStore
 Single interface, heterogenous stores

PolyStore Multiple interfaces, heterogenous stores

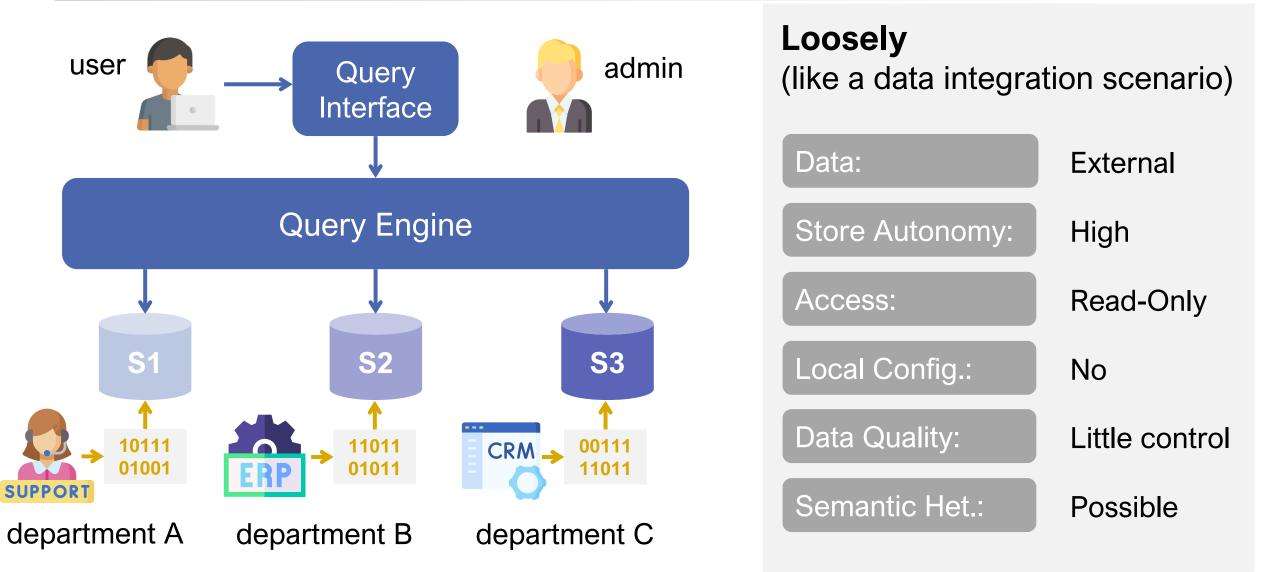
- Query Interfaces:
- Data Stores:



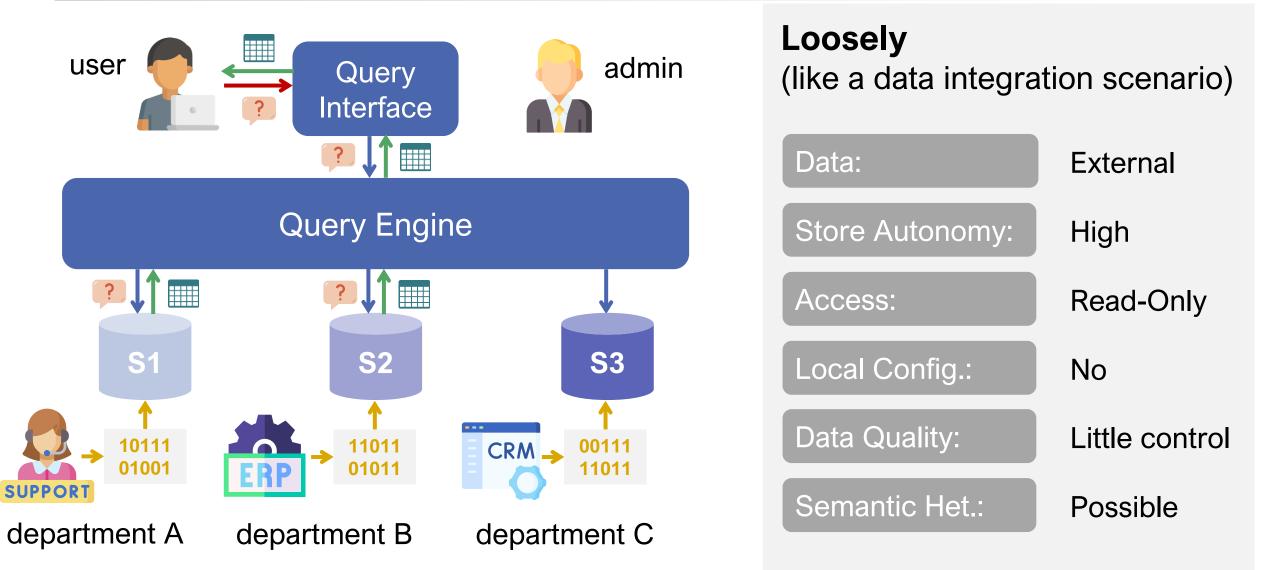


- Federated DB System Single interface, homogenous stores
- Polylingual / Polyglot DB System Multiple interfaces, homogenous s
- **MultiStore** Single interface, heterogenous stores
 PolyStore
- Multiple interfaces, heterogenous stores

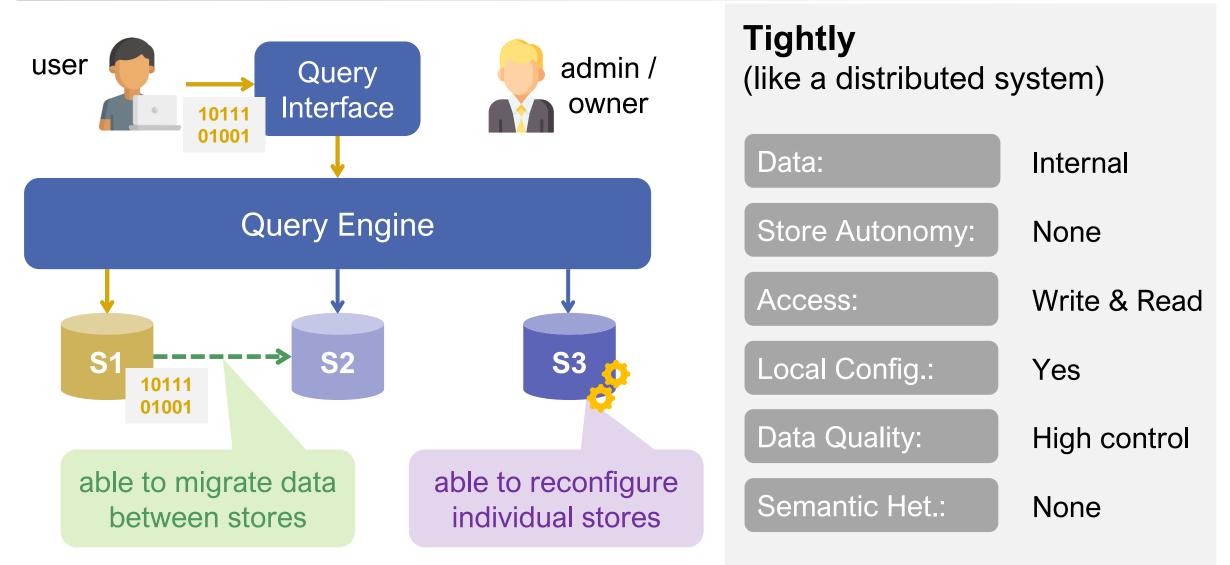
Loosely vs. Tightly Coupled



Loosely vs. Tightly Coupled



Loosely vs. Tightly Coupled



Evaluation Framework

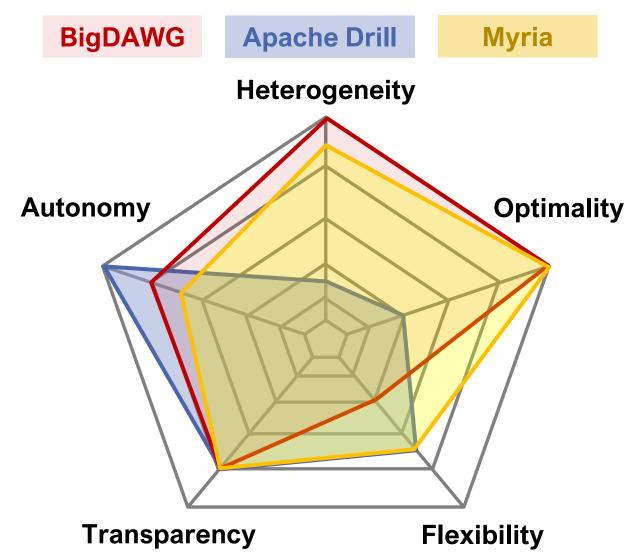
Heterogeneity Data Stores, Processing Engines & Query Interfaces

Autonomy Association, Execution & Evolution

Transparency Location & Transformation

Flexibility Schema, Interface & Architectural

Optimality Federated Plan & Data Placement



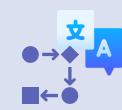
Tan et al., Enabling Query Processing across Heterogeneous Data Models: A Survey, IEEE BigData, 2017.

Basic Techniques & Concepts

Basic Techniques & Concepts: Overview

Mediator-Wrapper Architecture

Popular architecture of integration systems



Schema Mapping Languages

How to model relationships between schemas?

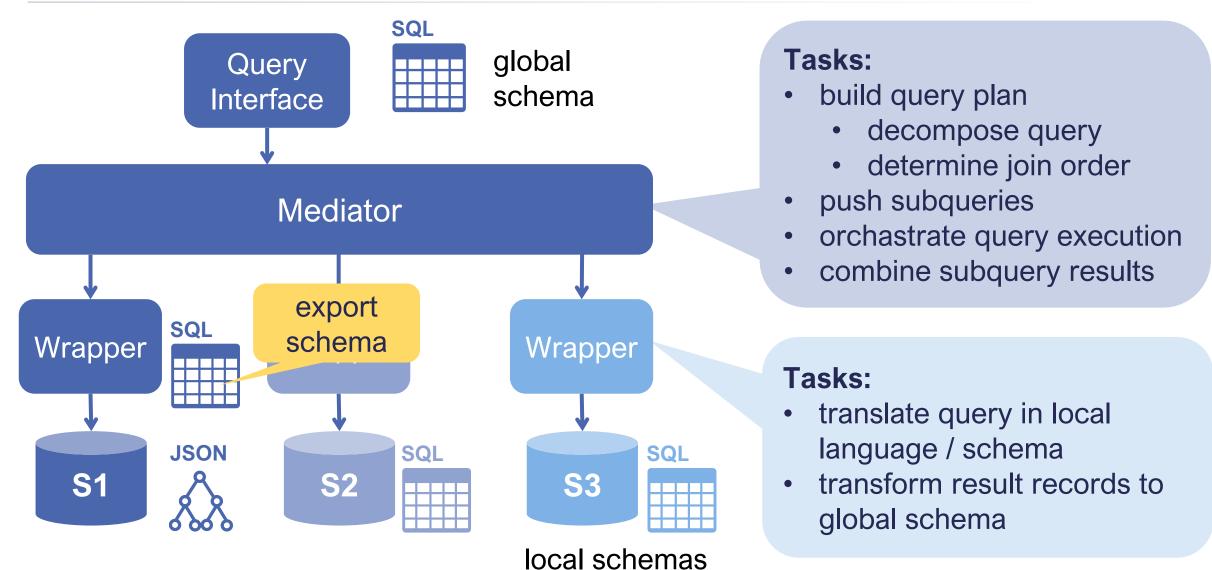
Joins

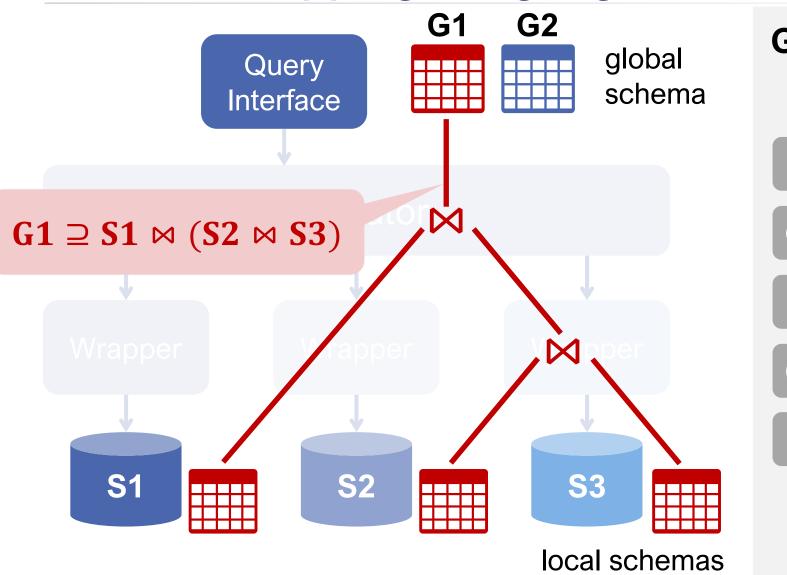
How to combine data from different stores?

Cross-Platform Query Planning

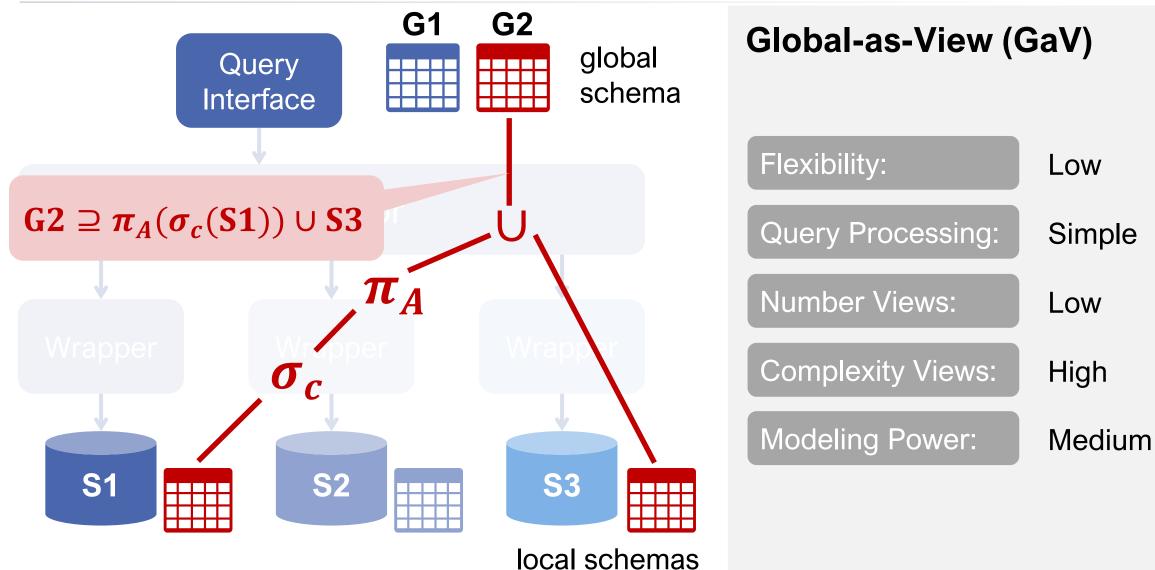
How to optimize queries across stores?

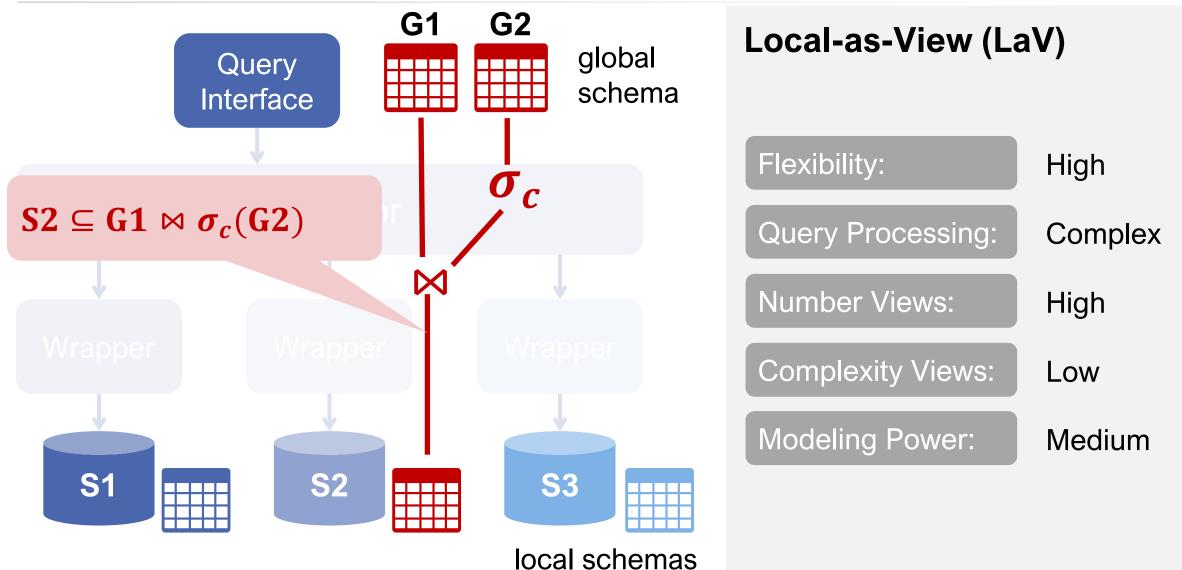
Mediator-Wrapper Architecture

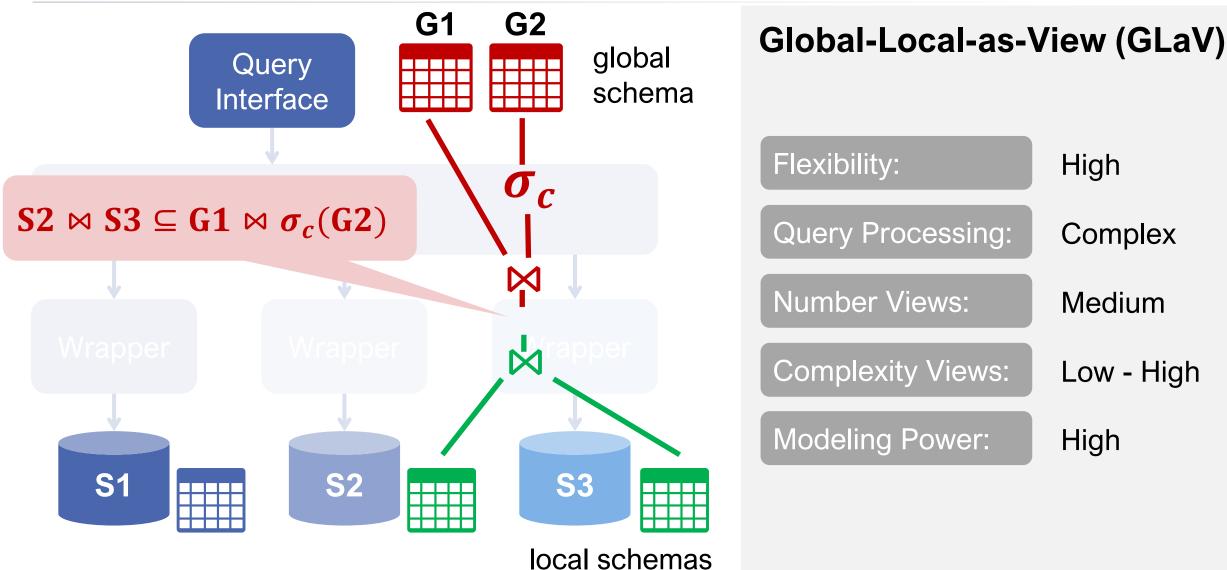




Global-as-View (GaV) Flexibility: Low Query Processing: Simple Number Views: Low Complexity Views: High Modeling Power: Medium







Join Operators, Frameworks & Algorithms

Data Streams

- Ajoin (2021)
- FastJoin (2019)
- ScaleJoin (2016)
- BiStream (2015)

- FastJoin (2019)
- SharesSkew (2018)
- SquirrelJoin (2017)
- Flow-Join (2016)

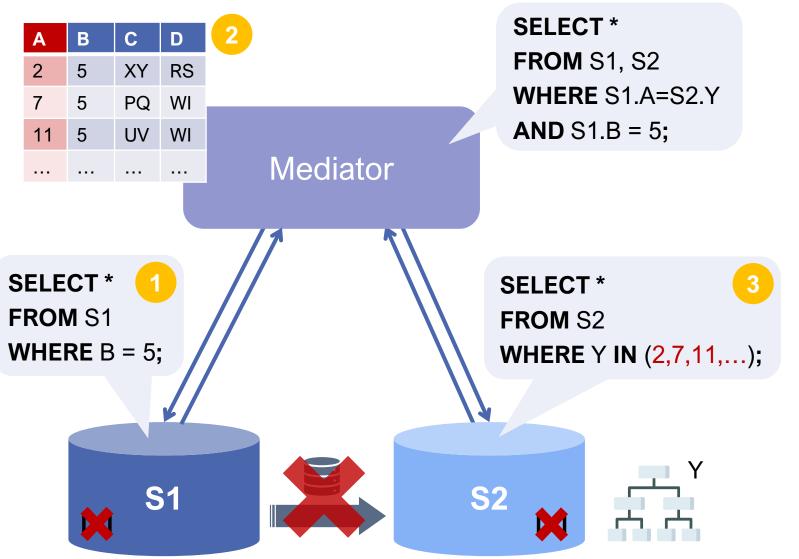
- GPU-NL Join (2021) •
- SquirrelJoin (2017)
- Flow-Join (2016)
- Track Join (2014)
- k-SDJoin (2020)
- HyMJ (2019)
- TL-Join (2019)

Polyglot Data Management

Limited store capabilities:

- Store is not able to perform joins
- Store is not able to provide all records
- Store returns records at irregular frequency

Bind Join (Fetch-Match Strategy)

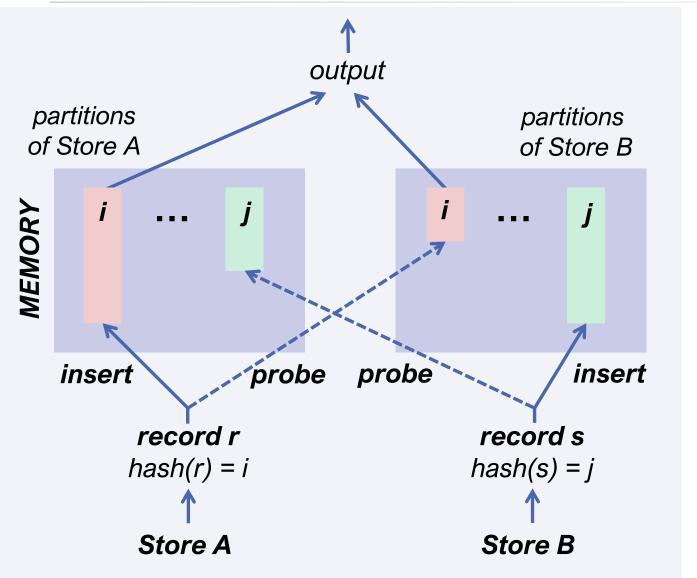


- Scenario:
 - Stores are not able to perform joins
 - Mediator cannot ship data between stores
 - |Subquery1| << |Subquery2|
- Without IN-subquery support: One query per join value x ∈ A

SELECT * FROM S2 WHERE Y = x;

- Fast access per index
- Used in CloudMdsQL and ESTOCADA

Double Pipelined Symmetric Hash Join



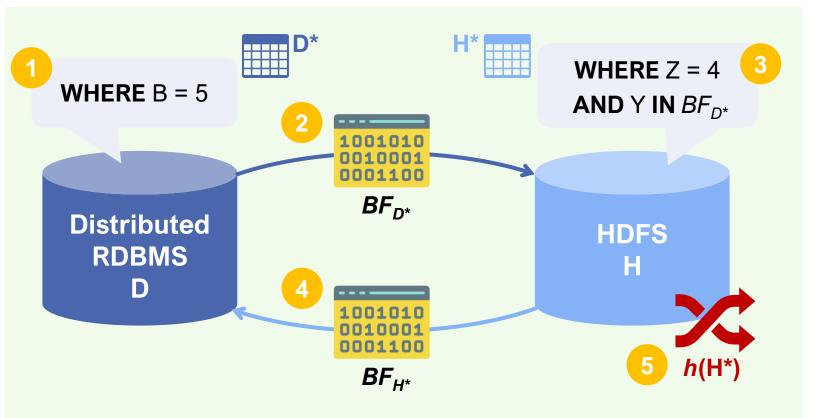
- Using two hash tables
 - insert new record in own hash
 - probe with other hash for potential join partners
- Symmetry reduces risks of blocking
- Pipelining (records are pushed immediately to next operator)
- XJoin: Spills partitions to disk
 - Enables larger data sets
 - Allows more parallelism
 - Reduces down times

Urhan et al., XJoin: A Reactively-Scheduled Pipelined Join Operator, IEEE Data Eng. Bull. 23(2), 2000.

Polyglot Data Management: State of the Art & Open Challenges

ZigZag Join (JEN)

SELECT * FROM D, H WHERE D.A = H.Y AND D.B = 5 AND H.Z = 4;



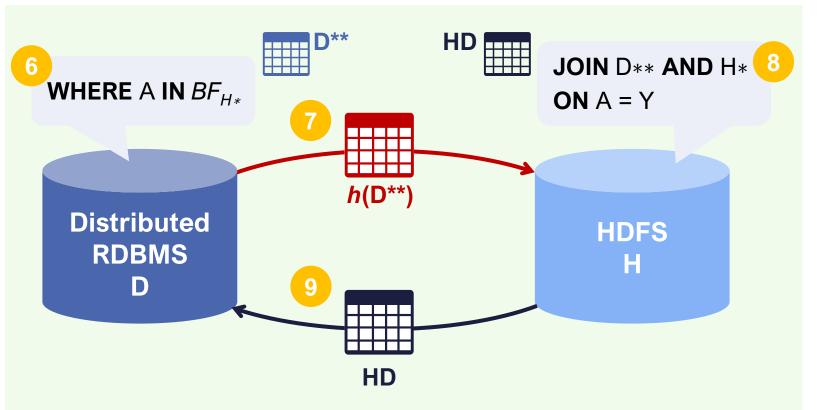
- Join between
 - (distributed) RDBMS D
 - HDFS H
- Assumptions:
 - |H| ≫ |D|
 - Local predicates not selective
 - Hash h for repartitioning
 - Local selection in D
 - Send bloom filter BF_{D*}
 - Local & Join selection in H
 - Send bloom filter BF_{H*}

Shuffle H* using h

Tian et al., Joins for Hybrid Warehouses: Exploiting Massive Parallelism in Hadoop and Enterprise Data Warehouses, EDBT, 2015.

ZigZag Join (JEN)

SELECT * **FROM** D, H **WHERE** D.A = H.Y **AND** D.B = 5 **AND** H.Z = 4;

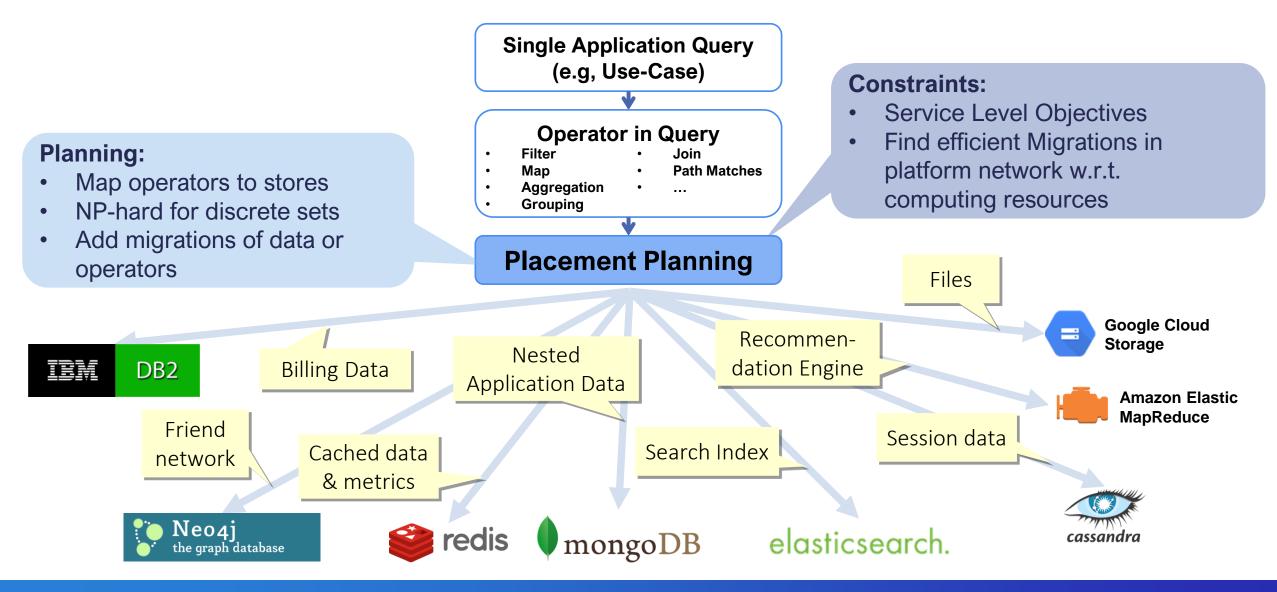


- Join between
 - (distributed) RDBMS D
 - HDFS H
- Assumptions:
 - |H| ≫ |D|
 - Local predicates not selective
 - Hash h for repartitioning
 - Join selection in D
 - Distribute D** to HDFS partitions using *h*
 - Join D** and H*
 (+ group by & aggregate)

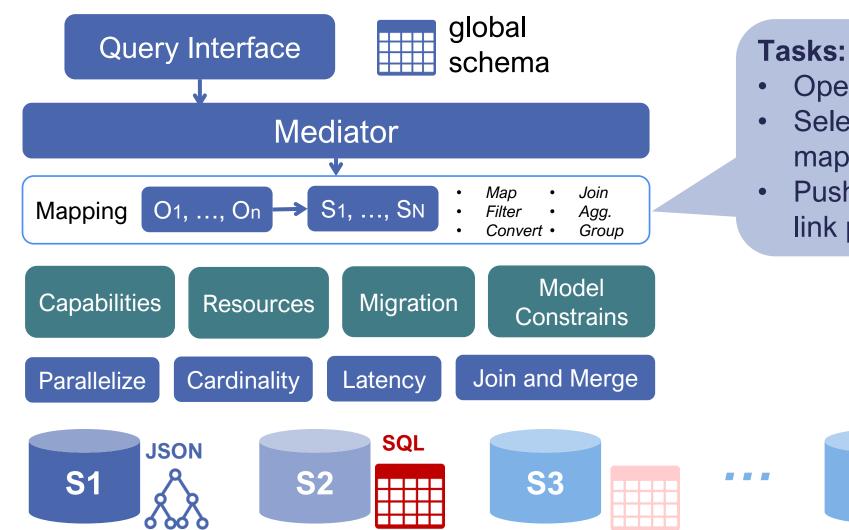
Send join result

Tian et al., Joins for Hybrid Warehouses: Exploiting Massive Parallelism in Hadoop and Enterprise Data Warehouses, EDBT, 2015.

Cross-Platform Query Planning



Cross-Platform Query Planning

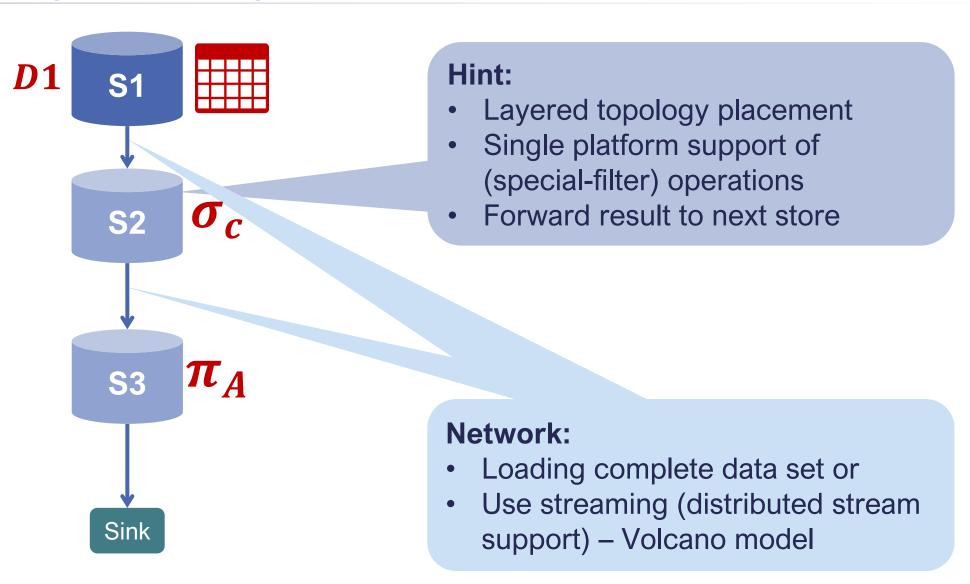


Operator plan

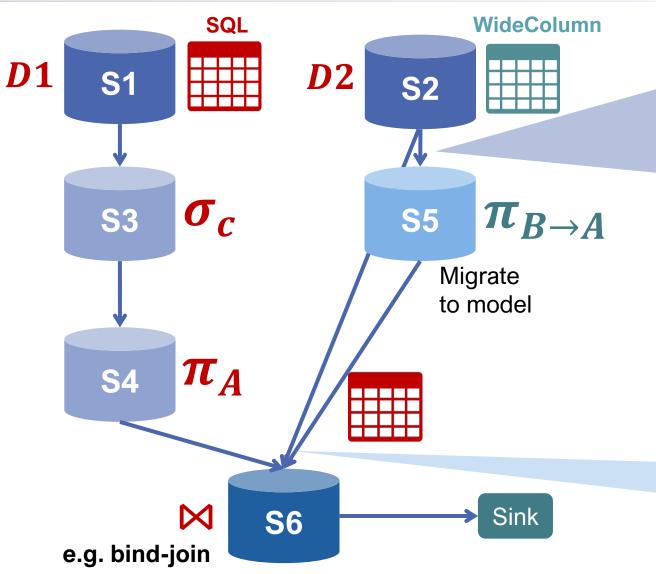
SN

- Select platforms with mappings for operations
- Push-down operations and link platforms with migrations

Shapes – Sequential



Shapes – Hierarchy



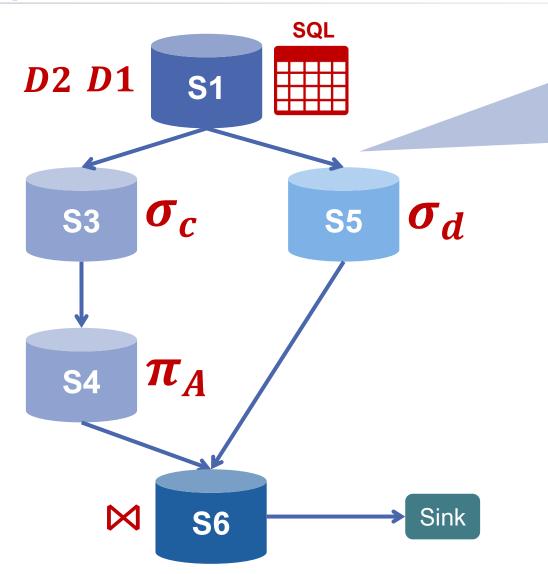
Hint:

- Replicated topology
 placement
- Decomposition for multiple sources (S1 & S2)
- Parallel execution
- Decomposition under actual system deployment (same node, but different stores)

Network:

• Symmetric vs. asymmetric join placement

Shapes – Diamond



Hint:

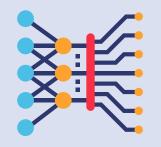
- Diamond topology
- Same as hierarchy-shape
- Partitioning of single data sets (e.g., reducing-workloadpartitioning)

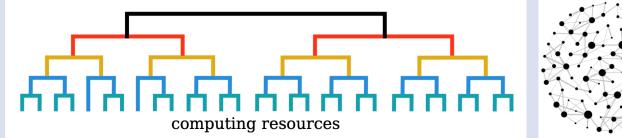
Operator Placement – Approaches

- Model-based: different strategies for placement solution
 - Hierarchical Placement
 - Pruned Space Placement
 - Relax-Expand-Solve
- Model-free: provide direct placement seek
 - Greedy First-match
 - Local optimization on greedy-first
 - Tabu search

• ML-based:

- Explore placement decision for similar workloads
- Learn latency of operator mappings
- Learn cardinalities of topologies (JOP)





Operator Placement – Model-free Tactics

Neighbour lookup

Resolve dependencies between platforms and operators

2

Fixed operators as initial placement and greedy expansion along logical plan

Co-Locate operators on same platforms

Move single operator to another location to reduce estimated cost and latency

4

5

Switch platform by adding migration between source and target

Enumerate multiple plans (repeat step 3., 4. and 5. until threshold)

- Local optima problem
- May split co-location

 Terminate, when no further improvement

6

3

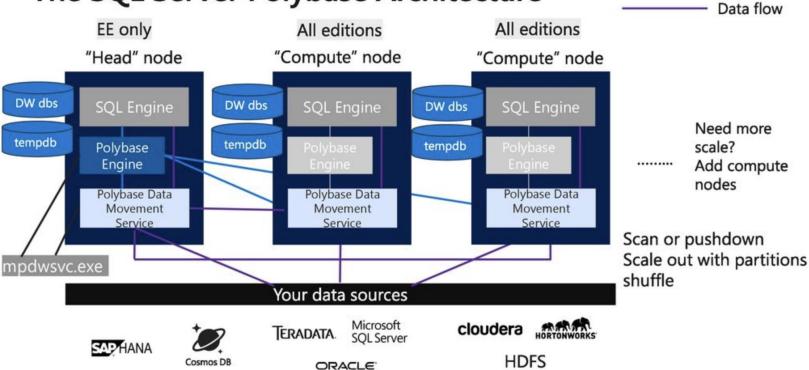
Polyglot Data Management: State of the Art & Open Challenges

Current Systems

Overview: Polyglot Data Management Systems

	Multistore Single Interface	Polystore Multiple Interfaces
Loosely coupled	PolyBase BigIntegrator FORWARD Apache Drill (Calcite) QoX QUEPA Odyssey	Myria
Tightly coupled	RHEEM MuSQLE HadoopDB	ESTOCADA Polypheny-DB
Hybrid	CloudMdsQL SparkSQL	BigDAWG

- Virtual data integration solution from Microsoft
- Distributed compute engine integrated with MS SQL Server
- Query data where it lives (T-SQL):
 - \circ Oracle
 - MongoDB
 - Teradata
 - Hadoop-Cluster
 - Cosmos-DB
 - S3-compatble Store
 - SAP HANA



Example from: PolyBase Extension Group Model: <u>https://docs.microsoft.com/de-de/sql/</u> relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16, Accessed: June 2022

control and execution

PolyBase – Query Concept

- Manual schema definition by Admin
- Create external data source in T-SQL (e.g., MongoDB)
 - Global schema in MS SQL
 - Definition of relational view on source such as MongoDB collection
 - User-defined statistics for source
 - MS SQL applies flattening rules on hierarchial source models
- Bridge the heterogeneity of models

```
CREATE EXTERNAL DATA SOURCE external_data_source_name
WITH (LOCATION = '<mongodb://<server>[:<port>]>'
[ [ , ] CREDENTIAL = <credential_name> ]
[ [ , ] CONNECTION_OPTIONS = '<key_value_pairs>'[,...]]
[ [ , ] PUSHDOWN = { ON | OFF } ])
[ ; ]
```

```
CREATE EXTERNAL TABLE [MongoDbRandomData](
  [_id] NVARCHAR(24) COLLATE SQL_Latin1_General_CP1_CI_AS NOT NULL,
  [RandomData_friends_id] INT,
  [RandomData_tags] NVARCHAR(MAX) COLLATE SQL_Latin1_General_CP1_CI_AS)
WITH (
  LOCATION='MyDb.RandomData',
  DATA_SOURCE=[MongoDb])
```

Example from: PolyBase Extension Group Model: <u>https://docs.microsoft.com/de-de/sql/</u> relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16, Accessed: June 2022

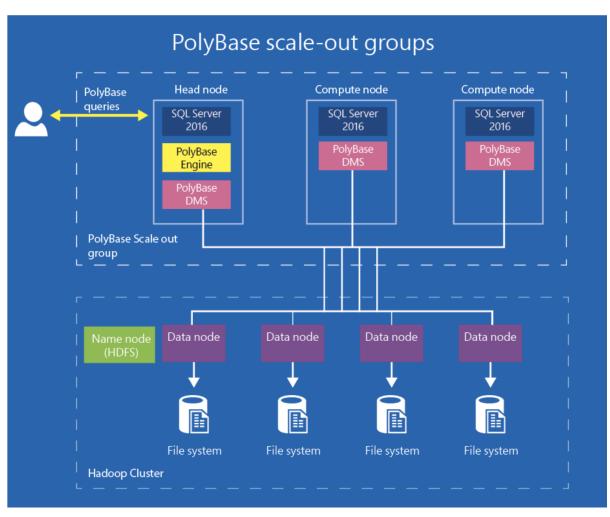
PolyBase – Optimization Model

Distributed query execution across SQL Servers

- Read external partitioning metadata
- Split MS SQL source and remote source
- Push-down operations where possible

Plugin architecture for SQL-Server

- Mapping of T-SQL to stores
- Scale-out compute node
- PolyBase waits for source data to be processed



Example from: PolyBase Extension Group Model: <u>https://docs.microsoft.com/en-us/sql/</u> relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16, Accessed: August 2022

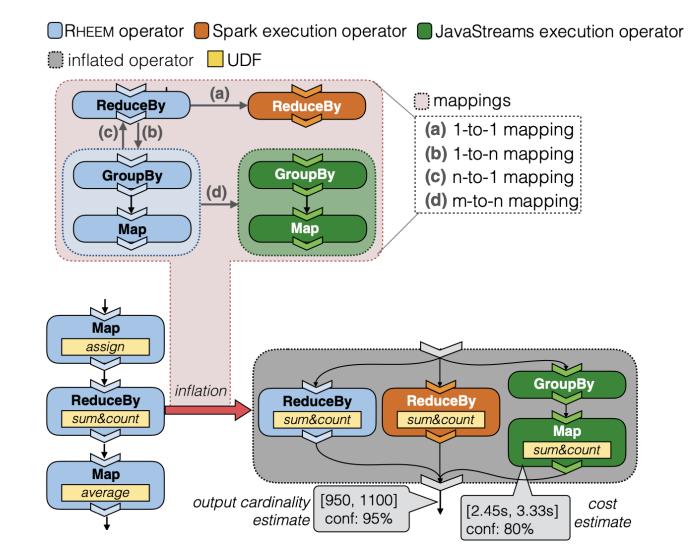
Overview: Polyglot Data Management Systems

	Multistore Single Interface	Polystore Multiple Interfaces
Loosely coupled	PolyBase BigIntegrator FORWARD Apache Drill (Calcite) QoX QUEPA Odyssey	Myria
Tightly coupled	RHEEM MuSQLE HadoopDB	ESTOCADA Polypheny-DB
Hybrid	CloudMdsQL SparkSQL	BigDAWG

RHEEM – Plan Enumeration

Input: Directed RHEEM dataflow plan

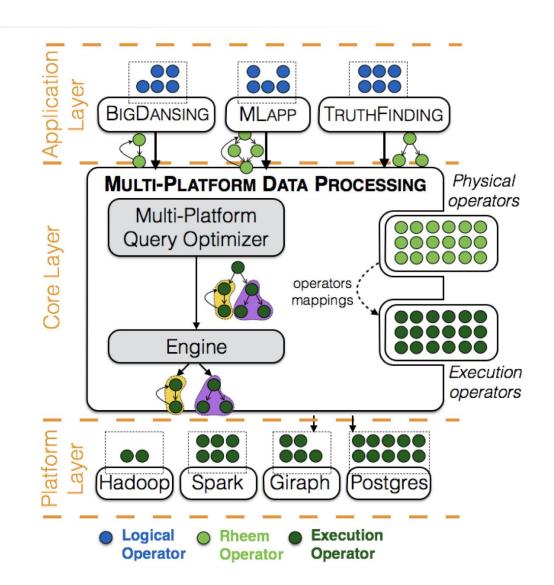
- RheemLatin DSL
- RheemStudio
- Java, Scala, Python
- REST Endpoint
- Output: Inflated operator plan with migration steps between platforms
 - Map fix RHEEM operator to execution platform
 - Apply mappings between single logical operators to n* execution operators
 - Resolve minimum conversion tree to transfer data between multiple platforms



Kruse et al., RHEEMix in the Data Jungle-A Cross-Platform Query Optimizer, VLDB J., 2020.

RHEEM

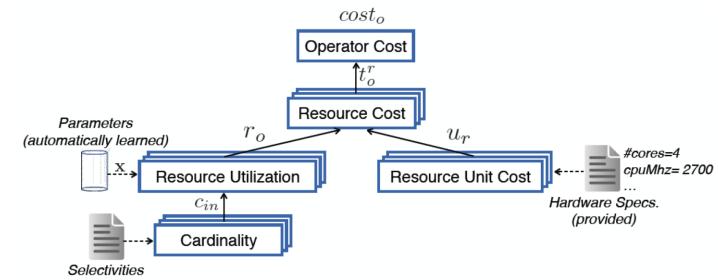
- Decoupling application task from (multi-platform) execution
- Mapping of *platform-agnostic* operator to *platform-specific* operators using LAV
- Resolve Migrations using Channel Conversion Graph
- Supports
 - InMemory (Java), GraphChi
 - PostgreSQL
 - Flink, Spark
- Developed as Apache Wayang (Incubating)



Agrawal et al., Rheem: Enabling multi-platform task execution, SIGMOD, 2018.

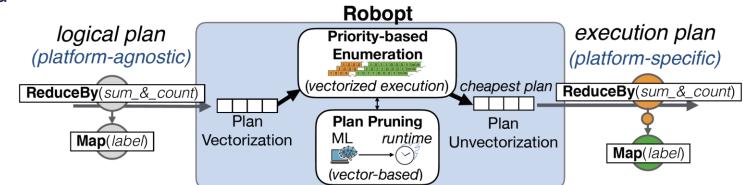
RHEEM – Plan Optimization

- First version: *genetic* cost-model learner, loss reduction
 - operator execution costs
 - Samples cardinalities and reduce size estimation function e.g., Filter: *card* (*Filter*)= c_{in} (*Filter*) * σ_f for selectivity **f**
- ML version (Robopt): supervised fine-level cost-tuning
 - Encodes logical operator-, platforms and movements into vectors
 - Vectorized execution plan
 - ML-model selects enumerated vector plans with platform-agnostic operations
 - Optimizes the order of executing RHEEM operators



⁽computed or provided)

Kruse et al., RHEEMix in the Data Jungle–A Cross-Platform Query Optimizer, VLDB J., 2020.



Kaoudi et al., ML-based cross-platform query optimization, ICDE, 2020.

Overview: Polyglot Data Management Systems

	Multistore Single Interface	Polystore Multiple Interfaces
Loosely coupled	PolyBase BigIntegrator FORWARD Apache Drill (Calcite) QoX QUEPA Odyssey	Myria
Tightly coupled	RHEEM MuSQLE HadoopDB	ESTOCADA Polypheny-DB
Hybrid	CloudMdsQL SparkSQL	BigDAWG

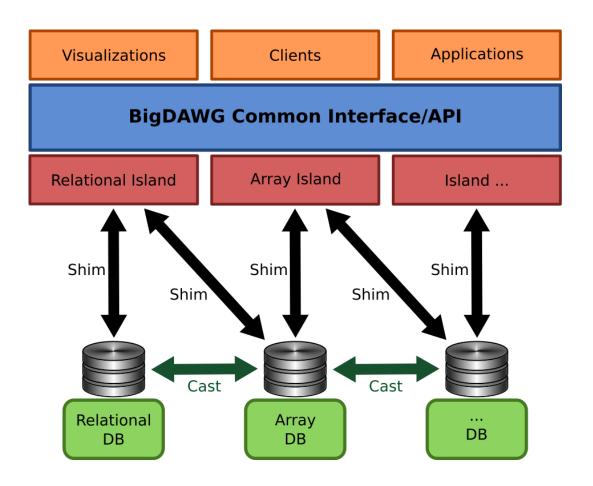
BigDAWG – Overview and Architecture

Developed at:

- At: Intel Science and Technology Center for Big Data (MIT)
- Between: 2015 and 2019

• Use Cases:

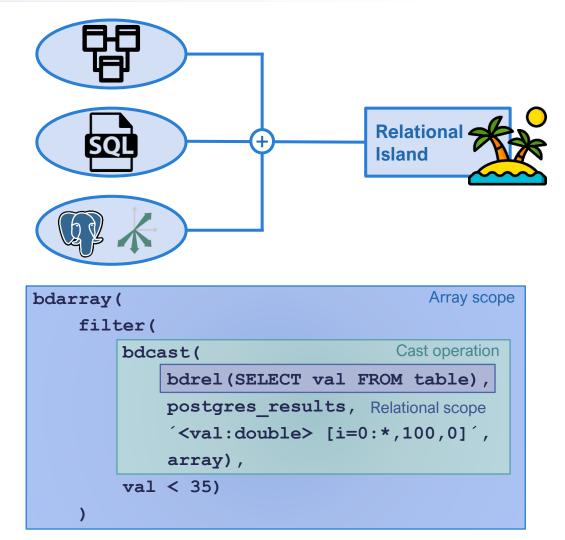
- Medical applications (MIMIC II)
- Ocean Metagenomic Analysis



Architecture figure: Gadepally et al., The BigDAWG polystore system and architecture, IEEE HPEC, 2016.

BigDAWG – Islands of Information

- 3 components of virtual islands:
 - Data model
 - Query language
 - Storage engines
- Degenerate islands to achieve semantic completeness
- Shims: semantical mapping between island and data store
- Casts and Scope: accessing multiple islands
- Extensible by implementing new islands



Example from: O'Brien, Polystore Systems for Complex Data Management, IEEE HPEC, 2017.

BigDAWG – Performance Profiling

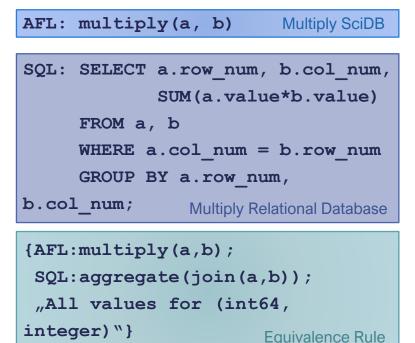
- Training mode:
 - all plans of a query are executed
 - \circ the best is stored in the preference matrix
- Optimized mode:
 - either the best plan from the preference matrix
 - or a random plan is executed
- Opportunistic mode:
 - Similar to optimized mode
 - Additional evaluations during times of low system utilization
 - Additional evaluations if new stores become available

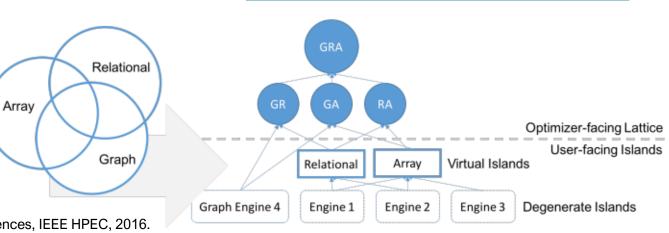
BigDAWG – Semantic Equivalence

- "Semantically equivalent queries […] are substitutable"
- Encode intersecting sets of semantic capabilities using a semantic lattice
- Capture semantic equivalent (sub-)queries in a semantic dictionary (Equivalence Rule)
- 3 types of semantic containment:
 - Order of result entries
 - Expressivness of semantics
 - Backward compatibility for primitive types

Figures from: She et al., BigDAWG Polystore Query Optimization Through Semantic Equivalences, IEEE HPEC, 2016.

Polyglot Data Management: State of the Art & Open Challenges





Overview: Polyglot Data Management Systems

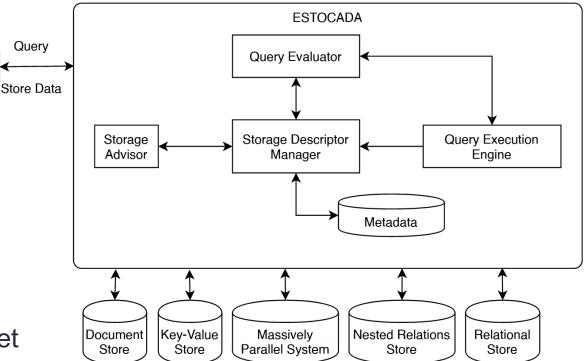
	Multistore Single Interface	Polystore Multiple Interfaces
Loosely coupled	PolyBase BigIntegrator FORWARD Apache Drill (Calcite) QoX QUEPA Odyssey	Myria
Tightly coupled	RHEEM MuSQLE HadoopDB	ESTOCADA Polypheny-DB
Hybrid	CloudMdsQL SparkSQL	BigDAWG

ESTOCADA

Developed by University of San Diego and INRIA*

Client

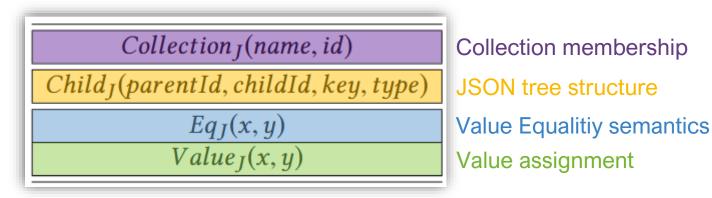
- Focus on view-based Query Rewriting (Local-as-view)
- Leveraging possible data redundancy and previously computed query results for improving performance
- Can be built into existing Polystores (e.g., BigDAWG, SparkSQL, Tatooine)
- Functional demonstration based on MIMIC III dataset



* Institut national de recherche en sciences et technologies du numérique

ESTOCADA – Virtual Views

- Relational model as pivot model
- Virtual views on underlying models (encoded *relationally*)
- Differences in semantics modeled by integrity contraints
 - tuple-generating dependencies
 - equality-generating dependencies
- Encodings/Models hidden (only necessary for query rewriting)



$Collection_J(n, x) \land Collection_J(n, y)$	\rightarrow	x = y	(1)
$Child_J(p, c_1, k, t) \land Child_J(p, c_2, k, t)$	\rightarrow	$c_1 = c_2$	(2)
$Eq_J(x,y)$	\rightarrow	$Eq_J(y, x)$	(3)
$Eq_J(x,y) \wedge Eq_J(y,z)$	\rightarrow	$Eq_J(x,z)$	(4)
$Eq_J(p, p') \wedge Child_J(p, c, k, t)$	\rightarrow		
$\exists c' \ Eq_J(c,c') \land Child_J(p',c',k,t)$			(5)
$Value_J(i, v_1) \land Value_J(i, v_2)$	\rightarrow	$v_1 = v_2$	(6)

Example: Alotaibi et al., Towards Scalable Hybrid Stores: Constraint-Based Rewriting to the Rescue, SIGMOD, 2019.

ESTOCADA – Query Language and Rewriting

QBT^{XM}:

- Block-based integration language
- Each block contains native query language
 - FOR clause: Bind variables from stores
 - WHERE clause: Selections on bound variables
 - RETURN clause: Construct new data based on variable bindings

Query Rewriting:

- Optimized version of PACB algorithm
- Query rewriting using all virtual as well as materialized views

Logical Query Plan:

- Translation of PACB result into logical plan
 - Subqueries and supported operators pushed down to stores
 - Handling of unsupported operators and cross-store-joins by the integration layer

Example: Alotaibi et al., ESTOCADA: Towards Scalable Polystore Systems, PVLDB, 2020.

Overview: Polyglot Data Management Systems

	Multistore Single Interface	Polystore Multiple Interfaces
Loosely coupled	PolyBase BigIntegrator FORWARD Apache Drill (Calcite) QoX QUEPA Odyssey	Myria
Tightly coupled	RHEEM MuSQLE HadoopDB	ESTOCADA Polypheny-DB
Hybrid	CloudMdsQL SparkSQL	BigDAWG

CloudMdsQL

- Functional SQL-like language implemented in LeanXcale (Research system)
- Multistore with (current) support for
 - PostgresQL
 Apache Spark
 - MongoDB (Python)
- Abtraction layer for data retrieval
 - $\circ\,$ Preserves the semantics of the underlying data stores
 - A query may contain embedded (native) subqueries
 - Python functions to query API-only query interfaces
- Mediator/wrapper architecture
- Relational model as internal data model

```
T1(x int, y int)@rdb = ( SELECT x, y FROM A )
T2(x int, z array)@mongo = {*
db.B.find( {$lt: {x, 10}}, {x:1, z:1, _id:0} )
*}
SELECT T1.x, T2.z
FROM T1, T2
WHERE T1.x = T2.x AND T1.y <= 3</pre>
```

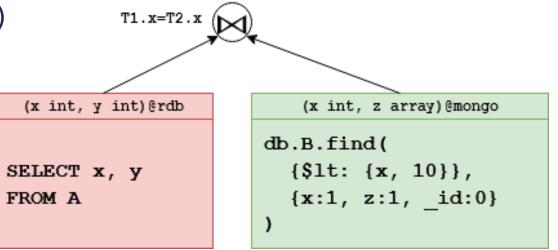

Code Example: Kolev et al., The CloudMdsQL Multistore System, SIGMOD, 2016.

CloudMdsQL – Query Execution

Queries usually consist of subqueries and an integration SELECT statement

```
T1(x int, y int)@rdb = ( SELECT x, y FROM A )
T2(x int, z array)@mongo = {*
db.B.find( {$lt: {x, 10}}, {x:1, z:1, _id:0} )
*}
SELECT T1.x, T2.z
FROM T1, T2
WHERE T1.x = T2.x
```

- The system creates query execution plans (QEPs)
 - Subqueries are pushed down to the wrappers/stores
 - Subquery results are transformed into a relational format
 - Relational data is combined using Bind Joins



Code Example: Kolev et al., The CloudMdsQL Multistore System, SIGMOD, 2016.

CloudMdsQL – Query Optimization

- The optimization search space for consists of all query rewritings by
 - Pushing down select operations
 - Expressing Bind Joins
 - \circ Join ordering
- Search space is small, thus a simple exhaustive search strategy is used
- Usage of a simple catalog for comparing rewritten queries:
 - Data collection cardinalities

• Attribute selectivities

• Indexes

- Simple cost models
- Local cost models provided by probing and sampling by the wrappers

Wrap Up: Polyglot Data Management Systems

Automatic cross-	Multistore Sing	Data virtu	alization, single T-SQL
platform optimization,		nterface, data fabric (Microsoft)	
operator placement &	BigIntegrator		Application driven
data migration	Virtual views, constrained based		Application-driven, customizable data
CC J	data transformation & block- based integration language		
	Odyssey	uaye	equivalence
	RHEEM	ESTO	CADA
Extensible pivot query	MuSQLE	Polyph	eny-DB
language, data store	HadoopDB		
agnostic (LeanXcale)	CloudMdsQL	BigDA	WG
пурпа	SparkSQL		

Open Challenges

Open Challenges: Overview

Unified Access vs. Unique Features How to design a suitable interface?

Ad Hoc Data Manipulation

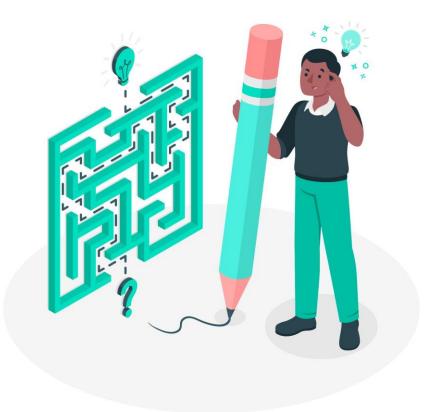
How to push user updates to the stores?

Adaptive Reconfiguration How to react to changing requirements?

Cross-System Query Optimization How to find the optimal query plan?

Streaming & Real-Time Readiness How to integrate real time requirements?

Multi-Model Schema Management How to update schema mappings?



Open Challenges: (i) Unified Access vs. Unique Features

"smallest common denominator"

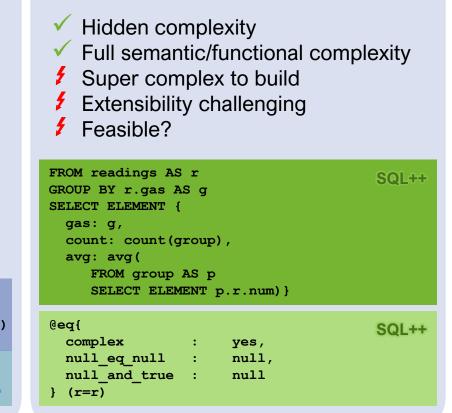
- Simple to build
- Not very powerful
- Loss of semantic/functional features

Mediator query language with embedded store query languages

- Easily extensible
- Full semantic/functional complexity
- Does not hide complexity
- Prevents intra store optimization potential

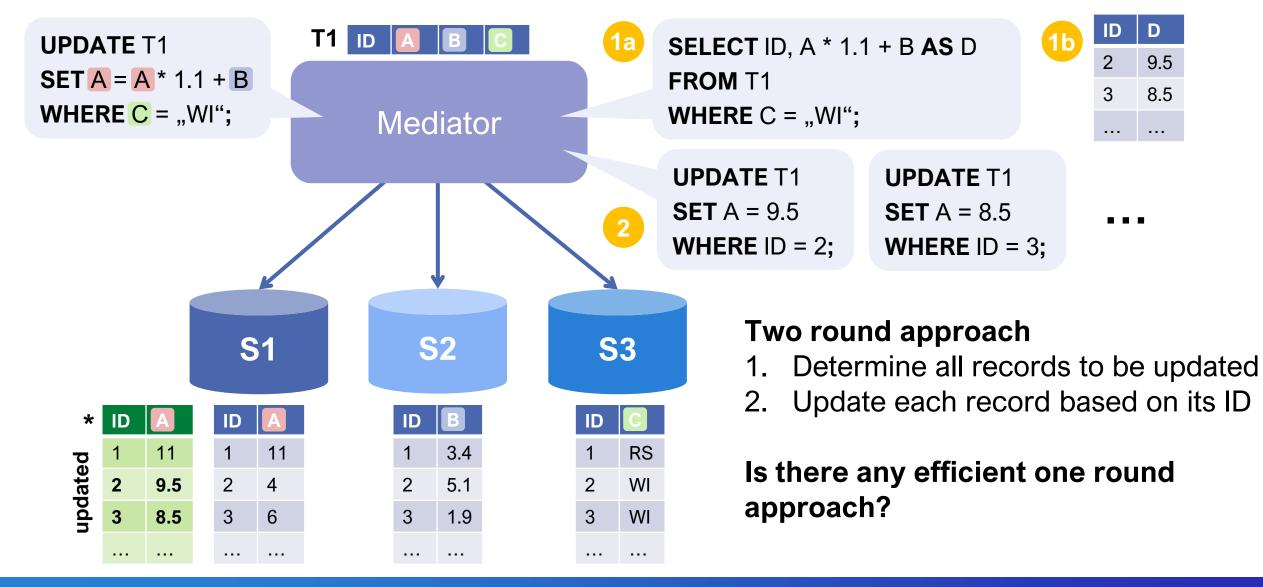
```
T1(x int, y int)@rdb = ( SELECT x, y FROM A )
T2(x int, z array)@mongo = {*
db.B.find( {$lt: {x, 10}}, {x:1, z:1, _id:0} )
*}
SELECT T1.x, T2.z
FROM T1, T2
WHERE T1.x = T2.x
CloudMdsQL
```

All-powerful query language



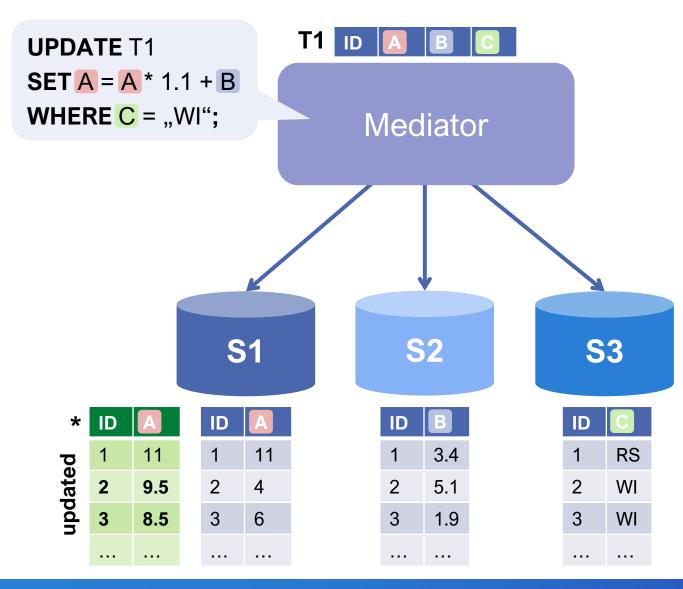
Code Examples: Kolev et al., The CloudMdsQL Multistore System. SIGMOD, 2016. Ong et al., The SQL++ Semi-structured Data Model and Query Language. arxiv.org, 2014.

Open Challenges: (ii) Ad Hoc Data Manipulation



Polyglot Data Management: State of the Art & Open Challenges

Open Challenges: (ii) Ad Hoc Data Manipulation



Further Challenges:

How to ensure cross-store

- Atomicity, Isolation & Durability
 - logging
 - locking
 - recovery
- Consistency
 - check constraints
 - referential integrity

if individual stores do not support such mechanisms?

Polyglot Data Management: State of the Art & Open Challenges

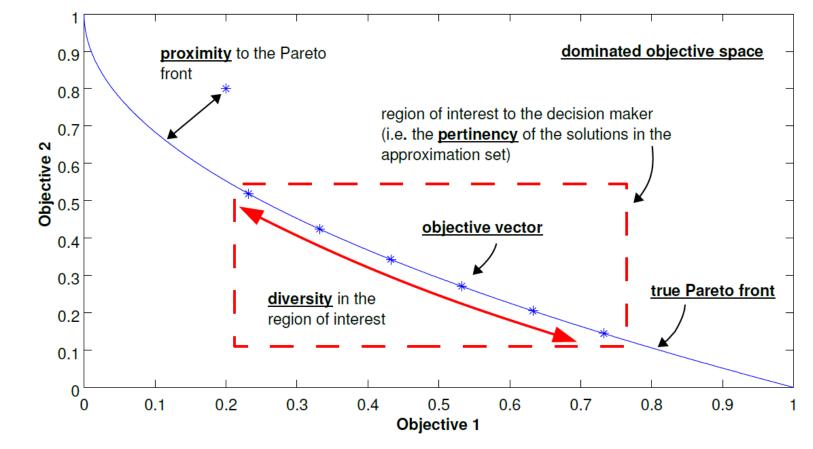
Open Challenges: (iii) Adaptive Reconfiguration

- Detecting changing requirements or workloads?
 - Fluctuating traffic throughout the day
 - Singular events (e.g. Black Friday)
 - Additional users in a multi-tenant environment
- Adapting/reconfiguring the system
 - Adding or removing resources
 - Reorganization (e.g. splitting a hot range)
- Changing the system topology
 - Data migration between stores
 (e.g. write-heavy data to main-memory database)

at runtime

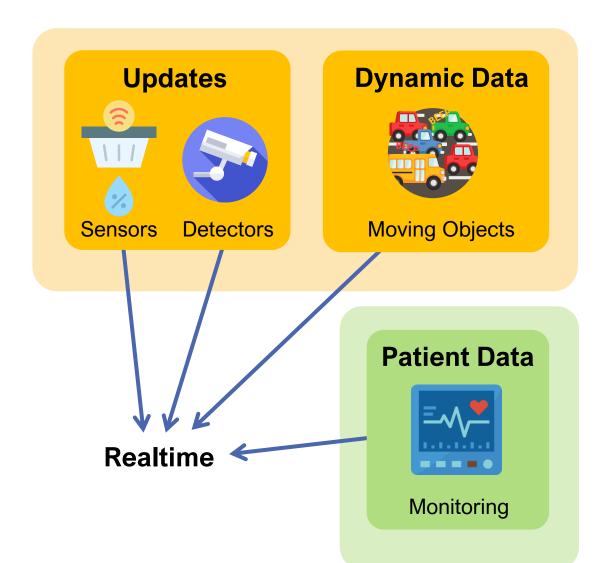
Open Challenges: (iv) Cross-System Query Optimization

- Operator Placement
 - Data vs. Operator Shipping
 - Migration Paths
- Pareto Optimum of Objectives
 - Latency
 - Throughput
 - Planning
 - Application Objective
- ML-based optimization
 - Hard constraint for query correctness in optimization
 - Join-Ordering for sub-query

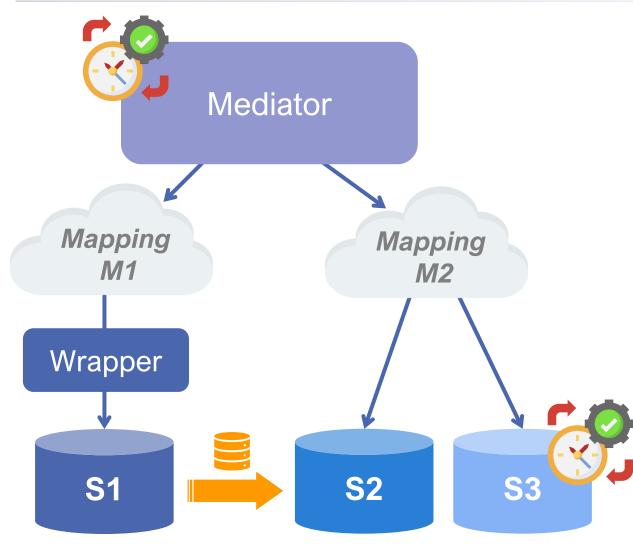


Open Challenges: (v) Streaming & Real-Time Readiness

- Streaming Workloads
 - Expose streaming capabilities
 - Integrate streaming with storage systems
- Push-based features
 - Triggers, ECA rules
 - Change notifications
- Caching
 - Materialized views
 - Cache coherence / cache invalidation



Open Challenges: (vi) Multi-Model Schema Management



- Mappings between global & local Schemas
 - fundamental for query rewriting
 - cross-model (e.g., SQL \leftrightarrow graph)
 - via wrapper
- Update of Mappings
 - Evolution of global schema
 - Evolution of local schema
 - Migration of data between stores
- Composition/Extraction of Mappings
 for data migration

Further Readings

Towards Polyglot Data Stores

Overview and Open Research Questions

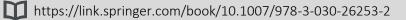
DANIEL GLAKE*, FELIX KIEHN*, and MAREIKE SCHMIDT*, Universität Hamburg FABIAN PANSE and NORBERT RITTER, Universität Hamburg

Nowadays, data-intensive applications face the problem of handling heterogeneous data with sometimes mutually exclusive use cases and soft non-functional goals such as consistency and availability. Since no single platform copes everything, various stores (RDBMS, NewSQL, NoSQL) for different workloads and use-cases have been developed. However, since each store is only a specialization, this motivates progress in polyglot data management emerged new systems called Mult- and Polystores. They are trying to access different stores transparently and combine their capabilities to achieve one or multiple given use-cases. This paper describes representative real-world use cases for data-intensive applications (OLTP and OLAP). It derives a set of requirements for polyglot data stores. Subsequently, we discuss the properties of selected Multi- and Polystores and evaluate them based on given needs illustrated by three common application use cases. We classify them into functional features, query processing technique, architecture and adaptivity and reveal a lack of capabilities, especially in changing conditions tightly integration. Finally, we outline the benefits and drawbacks of the surveyed systems and propose future research directions and current challenges in this area.

CCS Concepts: • Information systems \rightarrow DBMS engine architectures.

Additional Key Words and Phrases: polyglot persistence, multi-/polystore, data management, adaptivity, query processing.

https://par.nsf.gov/servlets/purl/10074262



https://www.cs.helsinki.fi/u/jilu/documents/CIKMTutorial2018.pdf

Enabl

Enabling Query Processing across Heterogeneous Data Models: A Survey

Ran Tan, Rada Chirkova Department of Computer Science North Carolina State University Raleigh, North Carolina Email: rtan2@ncsu.edu, rychirko@ncsu.edu

Vijay Gadepally Timothy G. Mattson Lincoln Laboratory Intel Corporation Massachusetts Institute of Technology Porfland, Orogon Lexington, Massachusetts Email: timothy.g.mattson@intel.con Email: vijayg@ll.mit.edu

Abstract-Modern applications often need to manage and nalyze widely diverse datasets that span multiple data models [1], [2], [3], [4], [5]. Warehousing the data through Extract-Transform-Load (ETL) processes can be expensive in such scenarios. Transforming disparate data into a single data model may degrade performance. Further, curating diverse datasets and maintaining the pipeline can prove to be labor ntensive. As a result, an emerging trend is to shift the focus to federating specialized data stores and enabling query processing across heterogeneous data models [6]. This shift can bring many advantages: First, systems can natively leverage multiple data models, which can translate to maximizing the emantic expressiveness of underlying interfaces and leveraging the internal processing capabilities of component data stores. Second, federated architectures support query-specific data ntegration with just-in-time transformation and migration. which has the potential to significantly reduce the operational complexity and overhead. Projects that focus on developing systems in this research area stem from various backgrounds and address diverse concerns, which could make it difficult to form a consistent view of the work in this area. In this survey, we introduce a taxonomy for describing the state of the art and propose a systematic evaluation framework conducive to unlerstanding of query-processing characteristics in the relevant

events expressed as JSON (JavaScript Object Notation) documents, social-media data recorded via key-value pairs, and weather feeds stored in relational tuples to predict traffic flows. Finally, in data journalism [5], journalists work with Tweet texts, relational databases provided by governments and institutions, and RDF-formatted Linked Open Data to support content management for writing political articles

In these and other scenarios, warehousing the data using Extract-Transform-Load (ETL.) processes can be very expensive. First, transforming disparate data into a single chosen data model may degrade performance. Indeed, there appears to be no 'noe size fits all' solution for all markets [14], [15], as specialized models and architectures enjoy overwhelming advantages in data warehousing, text searching, stream processing, and scientific databases. Second, curating diverse datasets and maintaining the pipeline could turn out to be lakor intensive [16]. One major reason is that rules and functions in ETL scripts do not adapt to changes in data and analytical requirements, and changes in application logic often result in the modification of ETL scripts.

For these and other reasons, a number of projects are shifting the focus to federating specialized data stores and enabling query processing across heterogeneous data models [6]. This shift can bring many advantages. First, the

I. INTRODUCTION

systems. We use the framework to assess four representative implementations: BigDAWG [7], [8], CloudMdsQL [9], [10],

Keywords-Cross-model query processing; Query-specific data

Modern applications often need to ma widely diverse datasets that span multi

Myria [11], [12], and Apache Drill [13].

CIKM 2018

Multi-model Databases and Tightly Integrated Polystores Current Practices, Comparisons, and Open Challenges

M. Tamer Özsu · Patrick Valduriez

Principles of

Distributed

Fourth Edition

Database

Systems

Jiaheng Lu, Irena Holubová, Bogdan Cautis

Thanks ...

Slides available at: vldb2022.dbis.hamburg

Felix Kiehn

Wolfram Wingerath

Mareike Schmidt

Benjamin Wollmer

Daniel Glake

Martin Poppinga

Fabian Panse

Norbert Ritter