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Motivation & 

Database Landscape



Use Case 1: E-Commerce
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Products ERP

forecastslogistics business

numbers

Payment

High Availability &

Flexible Consistency

OLTP

(High Consistency)

Machine

Learning

OLAP

recommendationsdescriptions ratings prices

High Read Throuput

transactions

https://www.baqend.com/publications

https://www.baqend.com/publications


Use Case 2: Medical Application Data (e.g. MIMIC)
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High 

Availability

OLTP

(High Consistency)

Machine

Learning

Complex

Analytics

Full Text 

Search

Payment

transactions

Examination Results

medical

images

laboratry

results
statistics

Patient Information

monitoringpatient data medication doctor‘s

notes

RealtimeStructured 

Data

https://physionet.org/content/mimiciii

https://physionet.org/content/mimiciii


Use Case 3: Digital Twin (e.g. MARS)
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High Read

Throughput

Realtime Machine 

Learning

High Write

Throughput

Vector

Point

Updates Dynamic DataStatic Data (Environmental)

satellite

images
buildings streets POI‘s

GraphVector 

Linestring

Vector

Polygon GIS

sensors detectors social 

network

moving

objects

decision

making

Raster

1,3 Band

https://mars.haw-hamburg.de

https://mars.haw-hamburg.de/


A Short History of Data Management

Relational 
Model

Ingres

System R

Triggers

Entity-Relationship Model

SQL 
Standard

PostgreSQL

HiPAC

Starburst

Rapide

STREAM

Aurora & 
Borealis

MapReduce

Bigtable

Dynamo

Spark

Storm

Flink

Samza

RethinkDB

Meteor

Firebase

Baqend

GFS

Relational Databases

Active Databases

CEP & 
Streams

Big Data & 
NoSQL

Real-Time 
Databases

Telegraph

Stream 
Processing

1970

1980

1990

2000

2010

today

Not included:
• Timeseries DBs
• (Geo-)spatial DBs
• Object-oriented DBs
• Probabilistic DBs
• Graph Stores
• …

Polyglot Data Management: State of the Art & Open Challenges 8



Typical Classification Schemes
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CP: Consistent &  
Partition Tolerant

CAP Classes

AP: Available & 
Partition Tolerant

CA: Not Partition 
Tolerant 

Not included: 

• Functional/non-functional properties

• Cloud vs. on-premise

• ACID vs. BASE

• …

Data Model

Graph

Document

Wide-Column

Key-Value

Relational

Pull vs. Push

Databases:
static collections

Real-Time DBs: 
dynamic collections

Stream Processing: 
dynamic streams



How to Choose The „Right“ Database System?
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Billing Data

Nested 
Application Data

Session data
Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage

Friend 
network Cached data 

& metrics

Recommen-
dation Engine

Application Layer



NoSQL Toolbox: Requirements vs. Techniques
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Functional Techniques Non-Functional

Scan Queries

ACID Transactions

Conditional or Atomic Writes

Joins

Sorting

Filter Queries

Full-text Search

Aggregation and Analytics

Sharding

Replication

Logging
Update-in-Place
Caching
In-Memory Storage
Append-Only Storage

Storage Management

Query Processing

Elasticity

Consistency

Read Latency

Write Throughput

Read Availability

Write Availability

Durability

Write Latency

Write Scalability

Read Scalability

Data Scalability

Global Secondary Indexing
Local Secondary Indexing
Query Planning
Analytics Framework
Materialized Views

Commit/Consensus Protocol
Synchronous
Asynchronous
Primary Copy
Update Anywhere

Range-Sharding
Hash-Sharding
Entity-Group Sharding
Consistent Hashing
Shared-Disk

Pivotal NoSQL 
techniques

application
requirements

enable

operational 
requirements

enable

https://www.springer.com/gp/book/9783030435059



NoSQL Decision Tree
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Access

Fast Lookups

RAM

Redis
Memcache

Unbounded

AP CP

Complex Queries

HDD-Size Unbounded

AnalyticsACID Availability Ad-hoc

Cache

VolumeVolume

CAP Query PatternConsistency

Example Applications 

Cassandra
Riak

Voldemort
Aerospike

Shopping-
basket

HBase
MongoDB
CouchBase
DynamoDB

Order
History

RDBMS
Neo4j

RavenDB
MarkLogic

OLTP

CouchDB
MongoDB
SimpleDB

Website

MongoDB
RethinkDB

HBase,Accumulo
ElasticSeach, Solr

Social
Network

Hadoop, Spark
Parallel DWH

Cassandra, HBase
Riak, MongoDB

Big Data

Open Challenges:
• Complex Trade-Offs that may

contradict one another
• Complex Architectures with many

different data management systems
• In-flux Requirements: You may have

to revisit your decision over time



More on the Topic
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For videos & books, visit

dbis.hamburg!

https://dbis.hamburg/publications


How to Choose The „Right“ Database System?
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Billing Data

Nested 
Application Data

Session data
Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage

Friend 
network Cached data 

& metrics

Recommen-
dation Engine

Actual Question: How to Build a System That Does All This?

Application LayerResearch Question:

Can we automate the mapping problem?

data database
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Terminology

& Taxonomies



Terminology & Taxonomies
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Multistores

?????

Federating (Specialized) 

Data Stores

Generalized

Data Federation

Modern Federated

Database Systems



Query & Data Store based Taxonomy

▪Query Interfaces:

▪Data Stores:
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Single Multiple

Homogenous Heterogenous



Query & Data Store based Taxonomy

▪Query Interfaces:

▪Data Stores:
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Single Multiple

Homogenous Heterogenous

Query Engine

single

query interface

homogenous data stores

• Federated DB System

Single interface, homogenous stores

S1 S2 S3



Query & Data Store based Taxonomy

▪Query Interfaces:

▪Data Stores:
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Single Multiple

Homogenous Heterogenous

Query Engine

multiple

query interfaces

homogenous data stores

• Federated DB System

Single interface, homogenous stores

• Polylingual / Polyglot DB System

Multiple interfaces, homogenous stores

S1 S2 S3



Query & Data Store based Taxonomy

▪Query Interfaces:

▪Data Stores:
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Single Multiple

Homogenous Heterogenous

Query Engine

heterogenous data stores

• Federated DB System

Single interface, homogenous stores

• Polylingual / Polyglot DB System

Multiple interfaces, homogenous stores

• MultiStore

Single interface, heterogenous storesS1 S2 S3

single

query interface



Query & Data Store based Taxonomy

▪Query Interfaces:

▪Data Stores:
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Single Multiple

Homogenous Heterogenous

Query Engine

heterogenous data stores

• Federated DB System

Single interface, homogenous stores

• Polylingual / Polyglot DB System

Multiple interfaces, homogenous stores

• MultiStore

Single interface, heterogenous stores

• PolyStore

Multiple interfaces, heterogenous stores

S1 S2 S3

multiple

query interfaces



• Federated DB System

Single interface, homogenous stores

• Polylingual / Polyglot DB System

Multiple interfaces, homogenous stores

• MultiStore

Single interface, heterogenous stores

• PolyStore

Multiple interfaces, heterogenous stores

Query & Data Store based Taxonomy

▪Query Interfaces:

▪Data Stores:
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Single Multiple

Homogenous Heterogenous

Query Engine

heterogenous data stores

S1 S2 S3

single vs. multiple

query interfaces



Loosely vs. Tightly Coupled
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Query Engine

Query 

Interface

Loosely
(like a data integration scenario)user

department A

Data:

Store Autonomy:

Access:

Local Config.:

Data Quality:

Semantic Het.:

External

High

Read-Only

No

Little control

Possible

10111

01001

department B department C

11011

01011

00111

11011

admin

S1 S2 S3



Loosely vs. Tightly Coupled
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Query Engine

Query 

Interface

Loosely
(like a data integration scenario)user

Data:

Store Autonomy:

Access:

Local Config.:

Data Quality:

Semantic Het.:

External

High

Read-Only

No

Little control

Possible

10111

01001
11011

01011

00111

11011

admin

S1 S2 S3

department A department B department C



Loosely vs. Tightly Coupled
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Tightly
(like a distributed system)

Data:

Store Autonomy:

Access:

Local Config.:

Data Quality:

Semantic Het.:

Internal

None

Write & Read

Yes

High control

None

Query Engine

Query 

Interface

user admin / 

owner

S1 S2 S3S1

10111

01001

10111

01001

able to migrate data

between stores

able to reconfigure

individual stores



Evaluation Framework
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Autonomy
Association, Execution & Evolution

Heterogeneity
Data Stores, Processing Engines
& Query Interfaces

Optimality
Federated Plan & Data Placement

Transparency
Location & Transformation

Flexibility
Schema, Interface & Architectural

Heterogeneity

Autonomy

Transparency Flexibility

Optimality

Tan et al., Enabling Query Processing across Heterogeneous Data Models: A Survey, IEEE BigData, 2017.

BigDAWG Apache Drill Myria



Part III
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Basic Techniques

& Concepts



Basic Techniques & Concepts: Overview
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Mediator-Wrapper Architecture
Popular architecture of integration systems

Schema Mapping Languages
How to model relationships between schemas?

Joins
How to combine data from different stores?

Cross-Platform Query Planning
How to optimize queries across stores?



Mediator

Mediator-Wrapper Architecture
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S1 S2 S3

Wrapper Wrapper Wrapper

Query 

Interface

global 

schema

local schemas

Tasks:

• build query plan

• decompose query

• determine join order

• push subqueries

• orchastrate query execution

• combine subquery results

Tasks:

• translate query in local

language / schema

• transform result records to

global schema

JSON SQL SQL

SQL

SQL
export

schema



Schema Mapping Languages
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S1 S2 S3

Mediator

Wrapper Wrapper Wrapper

Query 

Interface

global 

schema

local schemas

⋈

⋈

G1 G2
Global-as-View (GaV)

Flexibility:

Query Processing:

Number Views:

Complexity Views:

Modeling Power:

Low

Simple

Low

High

Medium

𝐆𝟏 ⊇ 𝐒𝟏 ⋈ (𝐒𝟐 ⋈ 𝐒𝟑)



Schema Mapping Languages
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S1 S2 S3

Mediator

Wrapper Wrapper Wrapper

Query 

Interface

global 

schema

local schemas

∪

G1 G2
Global-as-View (GaV)

𝝈𝒄

𝝅𝑨

𝐆𝟐 ⊇ 𝝅𝑨(𝝈𝒄(𝐒𝟏)) ∪ 𝐒𝟑

Flexibility:

Query Processing:

Number Views:

Complexity Views:

Modeling Power:

Low

Simple

Low

High

Medium



Schema Mapping Languages

Polyglot Data Management: State of the Art & Open Challenges 32

S1 S2 S3

Mediator

Wrapper Wrapper Wrapper

Query 

Interface

global 

schema

local schemas

G1 G2
Local-as-View (LaV)

𝝈𝒄

⋈
𝐒𝟐 ⊆ 𝐆𝟏 ⋈ 𝝈𝒄(𝐆𝟐)

Flexibility:

Query Processing:

Number Views:

Complexity Views:

Modeling Power:

High

Complex

High

Low

Medium



Schema Mapping Languages
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S1 S2 S3

Mediator

Wrapper Wrapper Wrapper

Query 

Interface

global 

schema

local schemas

G1 G2
Global-Local-as-View (GLaV)

𝝈𝒄

⋈
𝐒𝟐 ⋈ 𝐒𝟑 ⊆ 𝐆𝟏 ⋈ 𝝈𝒄(𝐆𝟐)

⋈

Flexibility:

Query Processing:

Number Views:

Complexity Views:

Modeling Power:

High

Complex

Medium

Low - High

High



Polyglot Data Management

Join Operators, Frameworks & Algorithms
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Limited store capabilities:

• Store is not able to perform joins

• Store is not able to provide all records

• Store returns records at irregular frequency

Distributed,
Parallel,  
& GPUs

• GPU-NL Join (2021)

• SquirrelJoin (2017)

• Flow-Join (2016)

• Track Join (2014)

• …

Data    
Streams

• Ajoin (2021)

• FastJoin (2019)

• ScaleJoin (2016)

• BiStream (2015)

• …

Network & 
Data Skews

• FastJoin (2019)

• SharesSkew (2018)

• SquirrelJoin (2017)

• Flow-Join (2016)

• …

Spatio-
temporal

• k-SDJoin (2020)

• HyMJ (2019)

• TL-Join (2019)

• …



S1
⋈

Mediator

Bind Join (Fetch-Match Strategy)
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S2
Y

SELECT *

FROM S1, S2 

WHERE S1.A=S2.Y

AND S1.B = 5;

SELECT *

FROM S1 

WHERE B = 5;

1 SELECT *

FROM S2

WHERE Y IN (2,7,11,…);

3

A B C D

2 5 XY RS

7 5 PQ WI

11 5 UV WI

… … … …

A

2

7

11

…

2 • Scenario:

• Stores are not able

to perform joins

• Mediator cannot ship

data between stores

• |Subquery1|≪ |Subquery2|

• Without IN-subquery support:

One query per join value x ∈ A 

SELECT *

FROM S2

WHERE Y = x;

• Fast access per index

• Used in CloudMdsQL and 

ESTOCADA
⋈



Double Pipelined Symmetric Hash Join
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… …i j j

M
E

M
O

R
Y

output

Store A Store B

record r

hash(r) = i

record s

hash(s) = j

probe probe insertinsert

partitions

of Store B

partitions

of Store A

• Using two hash tables

• insert new record in own hash

• probe with other hash for

potential join partners

• Symmetry reduces risks of blocking

• Pipelining (records are pushed

immediately to next operator)

• XJoin: Spills partitions to disk

• Enables larger data sets

• Allows more parallelism

• Reduces down times

i

Urhan et al., XJoin: A Reactively-Scheduled Pipelined Join Operator, 

IEEE Data Eng. Bull. 23(2), 2000. 



ZigZag Join (JEN)
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Distributed

RDBMS

D

HDFS

H

BFD*

BFH*

WHERE B = 5
1

2

4

WHERE Z = 4

AND Y IN BFD*

3

• Join between
• (distributed) RDBMS D

• HDFS H

• Assumptions:
• |H| ≫ |D|

• Local predicates not selective

• Hash h for repartitioning

1 Local selection in D

2 Send bloom filter BFD*

3 Local & Join selection in H

4 Send bloom filter BFH*

5 Shuffle H* using h
h(H*)5

D* H*

SELECT * FROM D, H 

WHERE D.A = H.Y AND D.B = 5 AND H.Z = 4;

Tian et al., Joins for Hybrid Warehouses: Exploiting Massive Parallelism 

in Hadoop and Enterprise Data Warehouses, EDBT, 2015. 



ZigZag Join (JEN)
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Distributed

RDBMS

D

HDFS

H

WHERE A IN BFH∗

6

7

9

JOIN D∗∗ AND H∗

ON A = Y

8

SELECT * FROM D, H 

WHERE D.A = H.Y AND D.B = 5 AND H.Z = 4;

6 Join selection in D

7 Distribute D** to HDFS 

partitions using h

8 Join D** and H*

(+ group by & aggregate)

9 Send join result

D** HD

h(D**)

HD
Tian et al., Joins for Hybrid Warehouses: Exploiting Massive Parallelism 

in Hadoop and Enterprise Data Warehouses, EDBT, 2015. 

• Join between
• (distributed) RDBMS D

• HDFS H

• Assumptions:
• |H| ≫ |D|

• Local predicates not selective

• Hash h for repartitioning



Cross-Platform Query Planning
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Single Application Query 

(e.g, Use-Case)

Operator in Query
• Filter

• Map

• Aggregation

• Grouping

• Join

• Path Matches 

• …

Constraints:

• Service Level Objectives

• Find efficient Migrations in 

platform network w.r.t.

computing resources

Placement Planning

Planning:

• Map operators to stores

• NP-hard for discrete sets

• Add migrations of data or 

operators

Billing Data
Nested 

Application Data

Session data
Search Index

Files

Amazon Elastic

MapReduce

Google Cloud

Storage

Friend 
network Cached data 

& metrics

Recommen-
dation Engine



Cross-Platform Query Planning
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Mediator

Query Interface
global 

schema

Mapping

Parallelize

Resources

O1, …, On S1, …, SN

Migration
Model 

Constrains

Latency

Capabilities

Cardinality Join and Merge

• Map

• Filter

• Convert

• Join

• Agg.

• Group

S1 S2 S3 SN…

Tasks:

• Operator plan

• Select platforms with

mappings for operations

• Push-down operations and 

link platforms with migrations

JSON SQL



Hint:

• Layered topology placement

• Single platform support of

(special-filter) operations

• Forward result to next store

Network:

• Loading complete data set or

• Use streaming (distributed stream 

support) – Volcano model

Shapes – Sequential
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S1

S2

S3

𝝈𝒄

𝝅𝑨

𝑫𝟏

Sink



Shapes – Hierarchy
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S5

Hint:

• Replicated topology 

placement

• Decomposition for multiple 

sources (S1 & S2)

• Parallel execution

• Decomposition under actual 

system deployment (same 

node, but different stores)

S1

S3

S4

S6

𝝈𝒄 𝝅𝑩→𝑨

𝝅𝑨

𝑫𝟐𝑫𝟏 S2

⋈ Sink

Network:

• Symmetric vs. asymmetric

join placement

Migrate

to model

e.g. bind-join

SQL WideColumn



Shapes – Diamond
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S5

Hint:

• Diamond topology

• Same as hierarchy-shape

• Partitioning of single data sets  

(e.g., reducing-workload-

partitioning)

S1

S3

S4

𝝈𝒄 𝝈𝒅

𝝅𝑨

𝑫𝟐 𝑫𝟏

S6 Sink⋈

SQL



Operator Placement – Approaches
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▪ ML-based:
◦ Explore placement decision for similar workloads

◦ Learn latency of operator mappings

◦ Learn cardinalities of topologies (JOP)

▪ Model-free: provide direct placement seek

◦ Greedy First-match

◦ Local optimization on greedy-first

◦ Tabu search 

▪ Model-based: different strategies 
for placement solution
◦ Hierarchical Placement

◦ Pruned Space Placement

◦ Relax-Expand-Solve
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Resolve dependencies

between platforms and 

operators

Fixed operators as initial 

placement and greedy 

expansion along logical plan

Co-Locate operators on 

same platforms

Move single operator to 

another location to reduce 

estimated cost and latency

1 2 3

4

Switch platform by adding 

migration between source 

and target

5

Enumerate multiple plans

(repeat step 3., 4. and 5. 

until threshold) 

6

• Local optima problem

• May split co-location

• Neighbour lookup

• Terminate, when no 

further improvement 

Operator Placement – Model-free Tactics



Part IV
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Current Systems



Overview: Polyglot Data Management Systems
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Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

BigIntegrator

FORWARD

Apache Drill (Calcite)

QoX

QUEPA

Odyssey

RHEEM

MuSQLE

HadoopDB

CloudMdsQL

SparkSQL

ESTOCADA

Polypheny-DB

BigDAWG

Myria

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

RHEEM

CloudMdsQL

ESTOCADA

BigDAWG

Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid

PolyBase

RHEEM

CloudMdsQL

ESTOCADA

BigDAWG

Single

Interface

Multiple

Interfaces



PolyBase
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▪ Virtual data integration solution

from Microsoft

▪ Distributed compute engine

integrated with MS SQL Server

▪ Query data where it lives (T-SQL):
◦ Oracle

◦ MongoDB

◦ Teradata

◦ Hadoop-Cluster

◦ Cosmos-DB

◦ S3-compatble Store

◦ SAP HANA

Example from: PolyBase Extension Group Model: https://docs.microsoft.com/de-de/sql/

relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16, 

Accessed: June 2022

https://docs.microsoft.com/de-de/sql/
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16


PolyBase – Query Concept
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▪ Manual schema definition by Admin

▪ Create external data source in T-SQL 

(e.g., MongoDB)

◦ Global schema in MS SQL 

◦ Definition of relational view on source 

such as MongoDB collection

◦ User-defined statistics for source

◦ MS SQL applies flattening rules on 

hierarchial source models

▪ Bridge the heterogeneity of models

Example from: PolyBase Extension Group Model: https://docs.microsoft.com/de-de/sql/

relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16, 

Accessed: June 2022

https://docs.microsoft.com/de-de/sql/
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16


PolyBase – Optimization Model 
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▪ Distributed query execution across 

SQL Servers

◦ Read external partitioning metadata

◦ Split MS SQL source and remote source

◦ Push-down operations where possible 

▪ Plugin architecture for SQL-Server

◦ Mapping of T-SQL to stores

◦ Scale-out compute node

◦ PolyBase waits for source data to be

processed

Example from: PolyBase Extension Group Model: https://docs.microsoft.com/en-us/sql/

relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16, 

Accessed: August 2022

https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16
https://docs.microsoft.com/en-us/sql/relational-databases/polybase/polybase-scale-out-groups?view=sql-server-ver16


Overview: Polyglot Data Management Systems
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Multistore Polystore

Loosely

coupled

Tightly

coupled

Hybrid
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▪ Input: Directed RHEEM dataflow plan

◦ RheemLatin DSL

◦ RheemStudio

◦ Java, Scala, Python

◦ REST Endpoint

▪ Output: Inflated operator plan with

migration steps between platforms

◦ Map fix RHEEM operator to execution
platform

◦ Apply mappings between single logical
operators to n* execution operators

◦ Resolve minimum conversion tree to
transfer data between multiple platforms

Kruse et al., RHEEMix in the Data Jungle–A Cross-Platform Query Optimizer, VLDB J., 2020.
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▪ Decoupling application task from

(multi-platform) execution

▪ Mapping of platform-agnostic operator

to platform-specific operators using LAV

▪ Resolve Migrations using Channel 

Conversion Graph

▪ Supports

◦ InMemory (Java), GraphChi

◦ PostgreSQL

◦ Flink, Spark

▪ Developed as Apache Wayang (Incubating)

Agrawal et al., Rheem: Enabling multi-platform task execution, SIGMOD, 2018.



RHEEM – Plan Optimization
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▪ First version: genetic cost-model 

learner, loss reduction

◦ operator execution costs

◦ Samples cardinalities and reduce size

estimation function e.g., Filter: card

(Filter)= cin(Filter) *σf for selectivity f

▪ ML version (Robopt): supervised

fine-level cost-tuning 

◦ Encodes logical operator-, platforms and 

movements into vectors

◦ Vectorized execution plan

◦ ML-model selects enumerated vector

plans with platform-agnostic operations

◦ Optimizes the order of executing

RHEEM operators

Kruse et al., RHEEMix in the Data Jungle–A Cross-Platform Query Optimizer, VLDB J., 2020.

Kaoudi et al., ML-based cross-platform query optimization, ICDE, 2020.
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BigDAWG – Overview and Architecture
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▪Developed at: 

◦ At: Intel Science and Technology 

Center for Big Data (MIT)

◦ Between: 2015 and 2019

▪Use Cases:

◦ Medical applications (MIMIC II)

◦ Ocean Metagenomic Analysis

Architecture figure: Gadepally et al., The BigDAWG polystore system and architecture, IEEE HPEC, 2016.



BigDAWG – Islands of Information
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Array scope

Cast operation

Relational scope

▪ 3 components of virtual islands:

◦ Data model

◦ Query language

◦ Storage engines

▪ Degenerate islands to achieve semantic

completeness

▪ Shims: semantical mapping between island

and data store

▪ Casts and Scope: accessing multiple 

islands

▪ Extensible by implementing new islands

bdarray(

filter(

bdcast(

bdrel(SELECT val FROM table),

postgres_results,

´<val:double> [i=0:*,100,0]´,

array),

val < 35)

)

Relational 

Island
+

Example from: O’Brien, Polystore Systems for Complex Data Management, IEEE HPEC, 2017.



BigDAWG – Performance Profiling

Polyglot Data Management: State of the Art & Open Challenges 58

▪ Training mode: 

◦ all plans of a query are executed

◦ the best is stored in the preference matrix

▪Optimized mode: 

◦ either the best plan from the preference matrix

◦ or a random plan is executed

▪Opportunistic mode: 

◦ Similar to optimized mode

◦ Additional evaluations during times of low system utilization

◦ Additional evaluations if new stores become available



BigDAWG – Semantic Equivalence
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▪ „Semantically equivalent queries […] are

substitutable“

▪ Encode intersecting sets of semantic capabilities

using a semantic lattice

▪Capture semantic equivalent (sub-)queries in a 

semantic dictionary (Equivalence Rule)

▪ 3 types of semantic containment:

◦ Order of result entries

◦ Expressivness of semantics

◦ Backward compatibility
for primitive types

AFL: multiply(a, b) Multiply SciDB

{AFL:multiply(a,b);

SQL:aggregate(join(a,b));

„All values for (int64, 

integer)“} Equivalence Rule

SQL: SELECT a.row_num, b.col_num,

SUM(a.value*b.value)

FROM a, b

WHERE a.col_num = b.row_num

GROUP BY a.row_num, 

b.col_num; Multiply Relational Database

Figures from: She et al., BigDAWG Polystore Query Optimization Through Semantic Equivalences, IEEE HPEC, 2016.
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ESTOCADA
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▪ Developed by University of San Diego and INRIA*

▪ Focus on view-based Query Rewriting

(Local-as-view)

▪ Leveraging possible data redundancy and 

previously computed query results for

improving performance

▪ Can be built into existing Polystores

(e.g., BigDAWG, SparkSQL, Tatooine)

▪ Functional demonstration based on MIMIC III dataset

* Institut national de recherche en sciences et technologies du numérique Architecture figure: Bugiotti et al., Invisible Glue: Scalable Self-Tuning Multi-Stores, CIDR, 2015.
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▪ Relational model as pivot model

▪ Virtual views on underlying models

(encoded relationally)

▪ Differences in semantics modeled

by integrity contraints

◦ tuple-generating dependencies

◦ equality-generating dependencies

▪ Encodings/Models hidden (only

necessary for query rewriting)

Example: Alotaibi et al., Towards Scalable Hybrid Stores: Constraint-Based Rewriting to the Rescue, SIGMOD, 2019.

Collection membership

JSON tree structure

Value Equalitiy semantics

Value assignment



ESTOCADA – Query Language and Rewriting
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QBTXM:

▪ Block-based integration language

▪ Each block contains native query language

◦ FOR clause: Bind variables from stores

◦ WHERE clause: Selections on bound variables

◦ RETURN clause: Construct new data based on 

variable bindings

AsterixDB query

SOLR result

model

Query Rewriting:

▪ Optimized version of PACB algorithm

▪ Query rewriting using all virtual as well as

materialized views

Logical Query Plan:

▪ Translation of PACB result into logical plan

◦ Subqueries and supported operators pushed

down to stores

◦ Handling of unsupported operators and 

cross-store-joins by the integration layer

Example: Alotaibi et al., ESTOCADA: Towards Scalable Polystore Systems, PVLDB, 2020.
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CloudMdsQL
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▪ Functional SQL-like language implemented in LeanXcale (Research system)

▪ Multistore with (current) support for

◦ PostgresQL ◦ Apache Spark

◦ MongoDB ◦ (Python)

▪ Abtraction layer for data retrieval

◦ Preserves the semantics of the underlying data stores

◦ A query may contain embedded (native) subqueries

◦ Python functions to query API-only query interfaces

▪ Mediator/wrapper architecture

▪ Relational model as internal data model

T1(x int, y int)@rdb = ( SELECT x, y FROM A )

T2(x int, z array)@mongo = {*

db.B.find( {$lt: {x, 10}}, {x:1, z:1, _id:0} )

*}

SELECT T1.x, T2.z

FROM T1, T2

WHERE T1.x = T2.x AND T1.y <= 3

Code Example: Kolev et al., The CloudMdsQL Multistore System, SIGMOD, 2016.



CloudMdsQL – Query Execution
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▪ Queries usually consist of subqueries and an integration SELECT statement

▪ The system creates query execution plans (QEPs)

◦ Subqueries are pushed down to the wrappers/stores

◦ Subquery results are transformed into

a relational format

◦ Relational data is combined using Bind Joins

T1(x int, y int)@rdb = ( SELECT x, y FROM A )

T2(x int, z array)@mongo = {*

db.B.find( {$lt: {x, 10}}, {x:1, z:1, _id:0} )

*}

SELECT T1.x, T2.z

FROM T1, T2

WHERE T1.x = T2.x

Code Example: Kolev et al., The CloudMdsQL Multistore System, SIGMOD, 2016.



CloudMdsQL – Query Optimization
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▪ The optimization search space for consists of all query rewritings by

◦ Pushing down select operations

◦ Expressing Bind Joins

◦ Join ordering

▪Search space is small, thus a simple exhaustive search strategy is used

▪Usage of a simple catalog for comparing rewritten queries:

◦ Data collection cardinalities ◦ Attribute selectivities

◦ Indexes ◦ Simple cost models

▪ Local cost models provided by probing and sampling by the wrappers
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Open Challenges



Open Challenges: Overview
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Cross-System Query Optimization
How to find the optimal query plan?

Unified Access vs. Unique Features
How to design a suitable interface?

Streaming & Real-Time Readiness
How to integrate real time requirements?

Ad Hoc Data Manipulation
How to push user updates to the stores?

Multi-Model Schema Management
How to update schema mappings?

Adaptive Reconfiguration
How to react to changing requirements?



Open Challenges: (i) Unified Access vs. Unique Features
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Mediator query language with

embedded store query languages

✓ Easily extensible

✓ Full semantic/functional complexity

Does not hide complexity

Prevents intra store optimization

potential

„smallest common denominator“

✓ Simple to build

Not very powerful

Loss of semantic/functional features

All-powerful query language

✓ Hidden complexity

✓ Full semantic/functional complexity

Super complex to build

Extensibility challenging

Feasible?

T1(x int, y int)@rdb = ( SELECT x, y FROM A )

T2(x int, z array)@mongo = {*

db.B.find( {$lt: {x, 10}}, {x:1, z:1, _id:0} )

*}

SELECT T1.x, T2.z

FROM T1, T2

WHERE T1.x = T2.x

Create

D
e
le

teR
e
a
d

Update

FROM readings AS r

GROUP BY r.gas AS g

SELECT ELEMENT {

gas: g,

count: count(group),

avg: avg(

FROM group AS p

SELECT ELEMENT p.r.num)}

@eq{

complex        :    yes,

null_eq_null :    null,

null_and_true :    null

} (r=r)

SQL++

SQL++

CloudMdsQL

Code Examples: Kolev et al., The CloudMdsQL Multistore System. SIGMOD, 2016. 

Ong et al., The SQL++ Semi-structured Data Model and Query Language. arxiv.org, 2014.
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Open Challenges: (ii) Ad Hoc Data Manipulation
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S2

ID A B C

S3

ID A

1 11

2 4

3 6

… …

ID B

1 3.4

2 5.1

3 1.9

… …

ID C

1 RS

2 WI

3 WI

… …

ID D

2 9.5

3 8.5

… …

T1 SELECT ID, A * 1.1 + B AS D

FROM T1 

WHERE C = „WI“;

UPDATE T1

SET A = 9.5 

WHERE ID = 2;

UPDATE T1

SET A = 8.5 

WHERE ID = 3;

…
2

Two round approach

1. Determine all records to be updated

2. Update each record based on its ID

Is there any efficient one round

approach?

A B C

CBA

UPDATE T1

SET A = A * 1.1 + B 

WHERE C = „WI“;

ID A

1 11

2 9.5

3 8.5

… …

A*

1a 1b

u
p

d
a

te
d
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S2

ID A B C

S3

ID A

1 11

2 4

3 6

… …

ID B

1 3.4
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3 1.9

… …

ID C

1 RS
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… …

T1 A B C

CBA

UPDATE T1

SET A = A * 1.1 + B 

WHERE C = „WI“;

ID A

1 11
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3 8.5

… …

A*

u
p

d
a

te
d

Further Challenges:

How to ensure cross-store

• Atomicity, Isolation & Durability

• logging

• locking

• recovery

• Consistency

• check constraints

• referential integrity

if individual stores do not support 

such mechanisms?



Open Challenges: (iii) Adaptive Reconfiguration
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▪Detecting changing requirements or workloads?

◦ Fluctuating traffic throughout the day

◦ Singular events (e.g. Black Friday)

◦ Additional users in a multi-tenant environment

▪Adapting/reconfiguring the system

◦ Adding or removing resources

◦ Reorganization (e.g. splitting a hot range)

▪Changing the system topology

◦ Data migration between stores 

(e.g. write-heavy data to main-memory database)

at runtime



Open Challenges: (iv) Cross-System Query Optimization
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▪ Operator Placement 

◦ Data vs. Operator Shipping

◦ Migration Paths

▪ Pareto Optimum of Objectives

◦ Latency

◦ Throughput

◦ Planning

◦ Application Objective

▪ ML-based optimization

◦ Hard constraint for query

correctness in optimization

◦ Join-Ordering for sub-query



Open Challenges: (v) Streaming & Real-Time Readiness
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▪Streaming Workloads

◦ Expose streaming capabilities

◦ Integrate streaming with storage systems

▪Push-based features

◦ Triggers, ECA rules

◦ Change notifications

▪Caching

◦ Materialized views

◦ Cache coherence / cache invalidation Realtime

Updates Dynamic Data

Sensors Detectors Moving Objects

Monitoring

Patient Data



Mediator

Open Challenges: (vi) Multi-Model Schema Management
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• Mappings between global & local

Schemas

• fundamental for query rewriting

• cross-model (e.g., SQL ↔ graph)

• via wrapper

• Update of Mappings

• Evolution of global schema

• Evolution of local schema

• Migration of data between stores

• Composition/Extraction of Mappings 

for data migration
S1 S2

Wrapper

S3

Mapping 

M2

Mapping 

M1



Further Readings
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https://arxiv.org/pdf/2204.05779.pdf

https://par.nsf.gov/servlets/purl/10074262

https://link.springer.com/book/10.1007/978-3-030-26253-2

https://www.cs.helsinki.fi/u/jilu/documents/CIKMTutorial2018.pdf

2

1

3

4

1 2 3

4
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Thanks …
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